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Abstract

A kernel over the Boolean domain is said
to be reflection-invariant, if its value does
not change when we flip the same bit in
both arguments. (Many popular kernels
have this property.) We study the geo-
metric margins that can be achieved when
we represent a specific Boolean function f
by a classifier that employs a reflection-

invariant kernel. It turns out ‖f̂‖∞ is an
upper bound on the average margin. Fur-

thermore, ‖f̂‖−1
∞ is a lower bound on the

smallest dimension of a feature space as-
sociated with a reflection-invariant kernel
that allows for a correct representation of
f . This is, to the best of our knowledge,
the first paper that exhibits margin and di-
mension bounds for specific functions (as
opposed to function families). Before this,
we present our main results in a more gen-
eral setting, namely for arbitrary finite do-
mains and other notions of invariance, in-
stead of unnecessarily restricting to the
above mentioned special case.

1 Introduction

There has been much interest in margin and di-
mension bounds during the last decade. The sim-
plest way to cast (most of) the existing results in
this direction is offered by the notion of margin
and dimension complexity associated with a given
sign matrix A ∈ {−1, 1}m×n. A linear arrange-
ment, given by unit vectors u1, . . . , um; v1, . . . , vn

(taken from an inner product space), is said to rep-
resent A if, for all i = 1, . . . , m and j = 1, . . . , n,
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Ai,j = sign(〈ui, vj〉). The dimension complexity of
A is the smallest dimension of an inner product
space that allows for such a representation. The
margin complexity is obtained similarly by look-
ing for the linear arrangement that leads to the
maximum average margin (or, alternatively, to the
maximum margin that can be guaranteed for all
choices of i and j). Applying counting arguments,
Ben-David, Eiron, and Simon [1] have shown that,
loosely speaking, an overwhelming majority of sign
matrices of small VC-dimension do not allow for a
linear arrangement whose margin or dimension is
significantly better than what can be guaranteed in
a trivial fashion. Starting with Forster’s celebrated
exponential lower bound on the dimension complex-
ity of the Hadamard-matrix [4], there has been a
series of papers [5, 6, 10, 7, 13, 15] presenting (in-
creasingly powerful) techniques for deriving upper
margin bounds or lower dimension bounds on the
complexity of sign matrices.

Note that a sign matrix represents a family of
Boolean functions, one Boolean function per col-
umn say. The lack of non-trivial margin or dimen-
sion bounds for a specific Boolean function has a
simple explanation: a specific function f(x) can
always trivially be represented in a 1-dimensional
space with geometric margin 1 by mapping an in-
stance x ∈ {−1, 1}n to f(x) ∈ {−1, 1}. The cor-
responding kernel would map a pair (x, x′) of in-
stances to 1 if f(x) = f(x′), and to −1 otherwise.
Clearly, the 1-dimensional “linear arrangement” for
f does not say much about the ability of kernel-
based large margin classifier systems to “learn” f
because we would need to know f perfectly prior
to the choice of the kernel. (If we had this knowl-
edge, there would be nothing to learn anymore.)
Nevertheless, this discussion shows that one cannot
expect non-trivial margin or dimension bounds for
specific functions that hold uniformly for all ker-
nels.

In this paper, we introduce the concept of reflec-
tion-invariant distributed functions over the Boolean
domain, a special case of which are the reflection-
invariant kernels. It is easy to see that many pop-



ular kernels actually are reflection-invariant. We
then derive non-trivial margin and dimension bounds
for specific Boolean functions that are valid for all
linear arrangements resulting from reflection-invariant
kernels. Interestingly, the bounds for a function f
can be expressed in terms of f ’s Fourier-spectrum.

As always, ‖f̂‖∞ denotes the largest absolute value
found in the spectrum of f ’s Fourier-coefficients.

We show that ‖f̂‖∞ is an upper bound on the largest

possible average margin, and ‖f̂‖−1
∞ is a lower bound

on the smallest possible dimension. Also note that
there is an efficient randomized algorithm which
will determine (with high probability) all Fourier-
coefficients above a threshold θ > 0, namely the
KM-algorithm [20]. So an estimation to our bounds
can be precomputed for a function before the actual
learning process.

The remainder of this paper is structured as fol-
lows. In Section 2, we introduce some notation
and recall some facts about the Fourier-expansion of
real-valued functions over the Boolean domain and
kernel-bases classification. In Section 3, we present
our main results for arbitrary finite domains and a
general notions of invariance. Besides we mention
a connection to a recent paper by Haasdonk and
Burkhardt [8]. In Section 4 we introduce the con-
cept of rotation-invariance and mention some con-
nections between the Fourier-expansion over an ar-
bitrary finite Abelian group and the spectral decom-
position of such functions. In Section 5, we consider
distributed functions over the Boolean domain and
the concept of reflection-invariance, which is simply
rotation-invariance over boolean domain. From a
practical point of view reflection-invariance is the
more important notion because many popular ker-
nels have this property. Section 6 is devoted to the
analysis of reflection-invariant kernels. Some open
problems are finally mentioned in Section 7.

2 Definitions and Notations

First of all we assume some familiarity with basics
in matrix and learning theory. For example, notions
like

• singular values, eigenvalues, spectral norm

• kernels, feature map, Reproducing Kernel Hilbert
Space

are assumed as known (although we shall occasion-
ally refresh the readers memory in the course of the
paper). Some central definitions and facts concern-
ing

• linear arrangements representing a given Boolean
function,

• margin and dimension associated with such a
linear arrangement,

• and Fourier expansion over arbitrary finite Abelian
groups

will be given later in the paper at the place where
it is required. In the following we want to declare
some notations and recall the Fourier-expansion of
real-valued functions as well as the notion of margin
in kernel-based classification.

2.1 Preliminaries and Fourier-expansion

Throughout the paper, δ denotes the Kronecker-
symbol, i.e., δ(a, b) = 1 if a = b and δ(a, b) = 0
otherwise. For two n-dimensional vectors x, y, we
define x◦y to be the vector obtained by multiplying
x and y componentwise, i.e., (x ◦ y)i := xiyi for
i = 1, . . . , n. The n-dimensional “all-ones vector” is
given by

~e = (1, . . . , 1) .

The vector with 1 in component k and zeros else-
where is denoted as ~ek. The n-dimensional “reflection-
vector” is given by

~r = (−1, . . . ,−1) .

The vector with −1 in component k and ones else-
where is denoted as ~rk. Note that, for every x ∈ Rn,
x ◦ ~r = −x, whereas vector x ◦ ~rk coincides with
x in all coordinates except for coordinate k which
equals −xk. We consider real-valued functions over
a finite domain D, i.e., functions of the form f :
D → R. These functions form a |D|-dimensional
vector space over the reals.

We are particularly interested in functions over
the Boolean domain D = {−1, 1}n so that d =
|D| = 2n. In this case, the parity functions

χz(x) :=
∏

zi=−1

xi , z ∈ D

form an orthonormal basis for the vector space of
boolean functions over D, that can be equipped
with the inner product

〈f, g〉 := 2−n ·
∑

x∈D

f(x) · g(x) .

Thus, every function f : D → R can be written in
the form

f(x) =
∑

z∈D

f̂(z) · χz(x) (1)

where

f̂(z) := 〈f, χz〉 = 2−n ·
∑

y∈D

f(y) · χz(y) .

As usual, equation (1) is referred to as the Fourier

expansion of f , and f̂(z) is called the Fourier-coefficient
of f at z. We briefly note that parity functions sat-
isfy the equation

χz(x) = (−1)|{i:xi=−1,zi=−1}| = χx(z) .



The matrix H = (Hx,z)x,z∈D given by Hx,z =
χz(x) is called the (2n × 2n)-Walsh-matrix. The
afore-mentioned properties of the parity functions
imply that H is symmetric and satisfies

H · H⊤ = H · H = 2n · I

where I denotes the identity matrix.

2.2 Kernel-based Classification

Let K be a valid kernel-function, ΦK the feature
map and 〈·, ·〉K the inner product that represent K
in the Reproducing Kernel Hilbert Space, and let
‖ · ‖K be the norm induced by 〈·, ·〉K .1 Then, Φ
satisfies

∀x, y ∈ D : K(x, y) = 〈Φ(x), Φ(y)〉 . (2)

With every “dual vector” α : D → R, we associate
the “weight vector”

w(α) :=
∑

x∈D

α(x)Φ(x) . (3)

In the context of “large margin classification”, α
is considered as a classifier that assigns the label
sign(〈w(α), Φ(x)〉) to input x. Consider f as a tar-
get function for a binary classification task. Then, a
negative sign of f(x)·〈w(α), Φ(x)〉 indicates a “clas-
sification error” on x. So this expression should
be positive and it is intuitively even better when is
leads to a large positive value. Thus, the following
number, called the (geometric) margin achieved by
α on x w.r.t. target function f and kernel K, is of
interest:

µK(f |α, x) :=
f(x) · 〈w(α), Φ(x)〉
‖w(α)‖ · ‖Φ(x)‖ (4)

By averaging over all x ∈ D, we obtain the function

µK(f |α) := 2−n
∑

x∈D

µK(f |α, x) .

Focusing on the margin that is guaranteed for every
x ∈ D, we should consider the function

µK(f |α) := min
x∈D

µK(f |α, x) .

By taking the supremum over all α : D → R, we get
the respective parameters of a large margin classifier
employing kernel function K:

µK(f) := sup
α:D→RµK(f |α)

µK(f) := sup
α:D→RµK(f |α)

Finally, taking the supremum ranging over all ker-
nels of a given specific class C, we get the respective

1In the sequel, we drop index K unless we would like
to stress the dependence on K.

parameters of a best possible large margin classifier
among C:

µC(f) := sup
K

µK(f)

µC(f) := sup
K

µK(f)

We briefly note that, obviously, the guaranteed mar-
gin is upper bounded by the average margin:

µK(f |α) ≤ µK(f |α)

µK(f) ≤ µK(f)

µC(f) ≤ µC(f)

3 A General Notion of Invariance

Throughout this section, D denotes an arbitrary fi-
nite domain, S(D) is the group of permutations over
D, and G ≤ S(D) is an arbitrary but fixed sub-
group. The considerations of the later sections will
correspond to the special case where D = {−1, 1}n

and G contains all permutations (transpositions ac-
tually) of the form x 7→ x ◦ a for a ∈ {−1, 1}n.

A distributed function f(x, y) is said to be G-
invariant if, for all x, y ∈ D and every σ ∈ G, the
following holds:

f(σ(x), σ(y)) = f(x, y)

Clearly, a function of the form g(f1, . . . , fd) for
G-invariant functions f1, . . . , fd is G-invariant itself.
More interesting is the the following result:

Lemma 1 G-invariant distributed functions over a
finite domain D are closed under the usual ma-
trix product and under the tensor-product of ma-
trices. More precisely, let F (x, y) and G(x, y) be
two G-invariant distributed functions (here viewed
as matrices). Then, the functions (F ·G)(x, y) is G–
invariant and the function (F ⊗ G)[(u, x), (v, y)] is
invariant over G×G (as subgroup of S(D)×S(D)).

Proof: Consider first the function (F · G)(x, y).
Let x, y ∈ D and σ ∈ G be arbitrary but fixed. The
following calculation shows that it is G-invariant:

(F · G)σ(x),σ(y) =
∑

z∈D

Fσ(x),z · Gz,σ(y)

=
∑

z∈D

Fx,σ−1(z) · Gσ−1(z),y

=
∑

z∈D

Fx,z · Gz,y

= (F · G)x,y

Now consider the tensor-product (F⊗G)[(u, x), (v, y)],
which is a distributed function over D × D, i.e., a
function over domain (D ×D) × (D × D). The fol-
lowing calculation shows that it is (G×G)-invariant:

(F ⊗ G)[(σ(u), τ(x)), (σ(v), τ(y))] =

F (σ(u), σ(v)) · G(τ(x), τ(y)) =

F (u, v) · G(x, y) =

(F ⊗ G)[(u, x), (v, y)]



Our general notion of invariance has been con-
sidered before by Haasdonk and Burkhardt [8], where
it is named “simultaneous invariance”. These au-
thors were interested in the construction of ker-
nels whose invariance properties reflect symmetries
within the data of a particular application. In this
section, we look at invariant kernels from a differ-
ent angle. We shall reveal non-trivial margin and
dimension bounds for specific functions that hold
uniformly for a family of invariant kernels. More
precisely, if f : D → {−1, 1} is a function on domain
D and G is a subgroup of S(D), then the largest av-
erage (or largest guaranteed, resp.) margin that can
be obtained when f is represented by a G-invariant
kernel is upper-bounded by the largest average (or
largest guaranteed, resp.) margin that can be ob-
tained for the family

Gf := {fσ : σ ∈ G}

where

fσ(x) := f(σ(x)) .

Since there are classical margin bounds that apply
to the family Gf , we obtain corresponding bounds
that apply to the single function f . An analogous
remark holds for dimension bounds. Details follow.

Assume that K(x, y) is a kernel that is G-invariant
and consider the feature map Φ = ΦK that repre-
sents K in the Reproducing Kernel Hilbert Space.
Then, for all x, y ∈ D and every σ ∈ G, Φ satisfies

〈Φ(σ(x), Φ(σ(y)〉 = 〈Φ(x), Φ(y)〉 . (5)

Lemma 2 If kernel K is G-invariant, then the fol-
lowing holds for every x ∈ D and every σ ∈ G:

‖ΦK(σ(x))‖K = ‖ΦK(x)‖K

‖w(α)‖K = ‖w(ασ)‖K

In other words, the norm ‖·‖K is constant on feature
vectors of instances taken from the same orbit

xG := {σ(x) : σ ∈ G}

and it assigns the same value to all dual vectors
from the set

{w(ασ) : σ ∈ G} .

Proof: Let Φ = ΦK , ‖·‖ = ‖·‖K , and 〈·, ·〉 = 〈·, ·〉K .
Clearly, ‖Φ(σ(x))‖ = ‖Φ(x)‖ because of

‖Φ(σ(x))‖2 = 〈Φ(σ(x)), Φ(σ(x))〉
(5)
= 〈Φ(x), Φ(x)〉
= ‖Φ(x)‖2 .

As for the second statement, see the following cal-
culation:

‖w(ασ)‖2 = 〈w(ασ), w(ασ)〉
(3)
=

〈
∑

x∈D

ασ(x)Φ(x),
∑

y∈D

ασ(y)Φ(y)

〉

=
∑

x,y∈D

α(σ(x))α(σ(y))〈Φ(x), Φ(y)〉

=
∑

x,y∈D

α(x)α(y)
〈
Φ(σ−1(x)), Φ(σ−1(y))

〉

(5)
=

∑

x,y∈D

α(x)α(y)〈Φ(x), Φ(y)〉

= ‖w(α)‖2

Lemma 3 For every G-invariant kernel K, and ev-
ery choice of f : D → {−1, 1}, x ∈ D, σ ∈ G, and
α : D → R, the following holds:

µK(fσ|ασ, x) = µK(f |α, σ(x))

Proof: The proof starts as follows:

fσ(x) · 〈w(ασ), Φ(x)〉 (3)
=

fσ(x)

〈
∑

y∈D

ασ(y)Φ(y), Φ(x)

〉
=

f(σ(x))
∑

y∈D

α(σ(y))〈Φ(y), Φ(x)〉 (5)
=

f(σ(x))
∑

y∈D

α(σ(y))〈Φ(σ(y)), Φ(σ(x))〉 =

f(σ(x))

〈
∑

y∈D

α(σ(y))Φ(σ(y)), Φ(σ(x))

〉
=

f(σ(x))

〈
∑

y∈D

α(y)Φ(y), Φ(σ(x))

〉
=

f(σ(x))〈w(α), Φ(σ(x))〉

Using this calculation in combination with Lemma 2,
the proof is easy to accomplish:

µK(fσ|ασ, x)
(4)
=

fσ(x) · 〈w(ασ), Φ(x)〉
‖w(ασ)‖ · ‖Φ(x)‖

=
f(σ(x)) · 〈w(α), Φ(σ(x))〉

‖w(α)‖ · ‖Φ(σ(x))‖
(4)
= µK(f |α, σ(x))



Corollary 4 For every G-invariant kernel K, and
every choice of f : D → {−1, 1}, σ ∈ G, and α :
D → R, the following holds:

µK(fσ|ασ) = µK(f |α)

µK(fσ|ασ) = µK(f |α)

µK(fσ) = µK(f)

µK(fσ) = µK(f)

µG(fσ) = µG(f)

µG(fσ) = µG(f)

Note that the last two equations in Corollary 4 ba-
sically say that the largest (average or guaranteed)
margin that can be achieved for a function f by a
large margin classifier is invariant under G (provided
that the underlying kernel is G -invariant).

Let M ∈ {−1, 1}r×s be a sign matrix. Con-
sider a linear arrangement A given by unit vectors
u1, . . . , ur; v1, . . . , vs ∈ Rd. The average margin
achieved by this arrangement for sign matrix M is
defined as follows:

µ(M |A) :=
1

rs
·

r∑

i=1

s∑

j=1

Mi,j〈ui, vj〉

The largest average margin that can be achieved for
sign matrix M by any linear arrangement is then
given by

µ(M) := sup
A

µ(M |A) ,

where the supremum ranges over all linear arrange-
ments A for M . Forster and Simon [7] have shown
that, for every M ∈ Rr×s, every d ≥ 1, and every
choice of unit vectors u1, . . . , ur; v1, . . . , vs in a real
inner-product space, the following holds:

r∑

i=1

s∑

j=1

Mi,j〈ui, vj〉 ≤
√

rs‖M‖ . (6)

From that, we conclude that

µ(M) ≤ ‖M‖√
rs

.

Consider the sign matrix Mf,G given by

Mf,G
x,σ := fσ(x) .

In combination with Corollary 4, we arrive at the
following

Theorem 5 Let D be a finite domain, and let G be
a subgroup of S(D). Then, every function f : D →
{−1, 1} satisfies

µG(f) ≤ ‖Mf,G‖√
|D| · |G|

.

In other words, no large margin classifier that em-
ploys a G-invariant kernel can achieve an average

margin for f which exceeds ‖Mf,G‖√
|D|·|G|

.

As our input space D is finite, we can assume
without loss of generality that the Reproducing Ker-
nel Hilbert Space for a kernel K on D coincides withRd(K) for some suitable 1 ≤ d(K) ≤ |D|. We say
that α : D → R represents target function f cor-
rectly w.r.t. kernel K if

∀x ∈ D : µK(f |α, x) > 0 .

Corollary 6 Let dG(f) denote the smallest dimen-
sion of a feature space associated with a G-invariant
kernel K that allows for a correct representation of
f . Then,

dG(f) ≥
√
|D| · |G|
‖Mf,G‖ .

Proof: According to Lemma 3, a kernel that al-
lows for a correct representation of f allows also for
a correct representation of all fσ. According to a re-
sult by Forster [4], the corresponding feature space

must have dimension at least
√
|D| · |G|/‖Mf,G‖.

Corollary 6 can be strengthened slightly:

Corollary 7 Let σi denote the i-th singular value
of Mf,G, where σ1, σ2, . . . are in decreasing order.
Then, dG(f) satisfies the following lower bound:

dG(f) ·
dG(f)∑

i=1

σ2
i ≥ 1 (7)

Proof: Let A ∈ {−1, 1}r×s be a matrix whose
columns are viewed as binary functions f1, . . . , fs.
It has been shown by Forster and Simon [7] that
the dimension d of a feature space which allows for
a correct representation of f1, . . . , fs satisfies

d ·
d∑

i=1

σ2
i (A) ≥ rs . (8)

This trivially implies (7).

4 Rotation-invariant Functions

We recall the general notion of a Fourier-expansion
over a finite Abelian group in Section 4.1. Some
facts about distributed functions over a finite Abelian
group are derived in Section 4.2. In Section 4.3, we
tie everything together and state the resulting mar-
gin and dimension bounds obtained in this general
setting.

4.1 Fourier-expansions over Finite Abelian
Groups

Let (D, +) be a finite Abelian group of size d = |D|.
A function χ : D → C is called a character over D
if, for every x, y ∈ D,

χ(x + y) = χ(x) · χ(y) .



It is well-known that there are exactly d characters,
and they form an orthonormal basis of the vector
space CD with respect to the inner product

〈f, g〉 :=
1

d
·
∑

x∈D

f(x) · g(x) . (9)

We may fix a bijection between D and the set of
characters and write χz for the character that cor-
responds to z ∈ D. Every function f : D → C can
be written in the form

f(x) =
∑

z∈D

f̂(z) · χz(x) (10)

where

f̂(z) := 〈f, χz〉 =
1

d
·
∑

y∈D

f(y) · χz(y) .

Equation (10) is referred to as the Fourier expansion

of f , and f̂(z) is called the Fourier-coefficient of f
at z.

According to the “Fundamental Theorem for Finitely
Generated Abelian Groups”, every finite Abelian
group is, up to isomorphism, of the form

D = Zq1
× · · · × Zqn

(11)

for some sequence q1, . . . , qn of prime powers. Equa-
tion (11) is assumed henceforth so that

d = |D| =

n∏

k=1

qk .

It is well-known that the characters over Zm are
given by

χ
(m)
k (j) = ωjk

m ,

where

ωm = exp

(
2πi

m

)

is the primitive root of unity of order m. The char-
acters over D are then given by

χz(x) =

n∏

k=1

χ(qk)
zk

(xk) .

Consider now the matrix H = (Hx,z)x,z∈D given
by Hx,z = χz(x). It is obvious that H is symmet-
ric. By the orthonormality of the characters with
respect to the inner product in (9), it follows that

H∗ · H = H · H∗ = d · I ,

where I denotes the identity matrix.

4.2 Distributed Functions over Finite
Abelian Groups

We are interested in distributed functions f : D ×
D → C and arrange the d2 Fourier-coefficients of

such a function as a matrix as follows:

F̂a,b = f̂(a,−b) (12)

= d−2
∑

(x,y)∈D×D

f(x, y)χ(a,−b)(x, y)(13)

= d−2 ·
∑

x∈D

∑

y∈D

f(x, y)χa(x)χb(y) (14)

In matrix notation, this reads as

F̂ = d−2 · H∗ · F · H . (15)

A distributed function f(x, y) over D is said to
be rotation-invariant if, for all x, y, a ∈ D, the fol-
lowing holds:

f(x + a, y + a) = f(x, y)

Note that rotation-invariance collapses to reflection-
invariance when the underlying Abelian group is of
the form (Zn

2 , +) or, written as group with a multi-
plicative structure, of the form ({−1, 1}n, ·).

Here are some examples for rotation-invariant
functions:

• A distributed function of the form f(x, y) =
g(x − y) is obviously rotation-invariant. Con-
versely, any rotation-invariant function f(x, y)
can be written in this form by setting g(x) :=
f(x, 0) because rotation-invariance implies that

f(x, y) = f(x − y, 0) = g(x − y) .

• Because of the obvious identity

χz(x − y) = χz(x) · χz(y) ,

the distributed function χz(x)·χz(y) is rotation-
invariant too.

The fact that f(x, y) = g(x − y) is a rotation-
invariant function can be restated as follows: any
function f(x, y) that can be cast as a function in
x1−y1 mod q1, . . . , xn−yn mod qn is rotation-invariant.

In terms of the matrix of Fourier-coefficients, F̂ ,
rotation-invariant functions over D can be charac-
terized as follows:

Lemma 8 A distributed function f(x, y) over D is

rotation-invariant iff F̂ is a diagonal matrix.

Proof: Assume first that f(x, y) is rotation-invariant.

Consider a Fourier-coefficient in F̂ outside the main
diagonal, say F̂a,b so that ak 6= bk. Every pair (x, y)
can be put into the equivalence class

{(x + j ~ek, y + j ~ek) : j = 0, . . . , qk − 1} .

We show that every equivalence class contributes 0
to (14):

qk−1∑

j=0

f(x + j ~ek, y + j ~ek)χa(x + j ~ek) · χb(y + j ~ek) =

f(x, y)χa(x) · χb(y)

qk−1∑

j=0

χ
(qk)
ak

(j)χ
(qk)
bk

(j)



The latter sum vanishes because it equals

qk−1∑

j=0

ω(bk−ak)j
qk

.

Recall that δ denotes the Kronecker symbol and it
is well-known that

m−1∑

j=0

ω(l′−l)j
m = m · δl,l′ .

This shows that F̂a,b = 0.

Now assume that F̂ is a diagonal matrix. We con-
clude from (15) that

F = H · F̂ · H∗ , (16)

which implies that

Fx,y =
∑

z∈D

F̂z,z · χx(z) · χy(z) .

Rotation-invariance is now easily obtained:

f(x + a, y + a) =
∑

z∈D

F̂z,z · χx+a(z) · χy+a(z)

=
∑

z∈D

F̂z,z · χz(x + a) · χz(y + a)

=
∑

z∈D

F̂z,z · χz(x) · χz(y)

= f(x, y)

In the second-last equation, we used the rotation-
invariance of χz(x) · χz(y).

Corollary 9 Assume that f(x, y) is a rotation-invariant
distributed function over D. Then the (complex)
eigenvalues of d−1 · F are found on the main diag-
onal of F̂ .

Proof: Rewrite (16) as

d−1F = (d−1/2H) · F̂ · (d−1/2H∗)

and observe that this is nothing but the spectral
decomposition of d−1F (since F̂ is a diagonal matrix
and d−1/2H is unitary).

We briefly note the following result:

Lemma 10 Let F̂ be the (diagonal) matrix that
contains the Fourier-coefficients of the (rotation-
invariant) distributed function f(x − y). Then, for

every z ∈ D, f̂(z) = F̂z,z.

Proof: Consider the function fy(x) := f(x − y).
We shall show below that the Fourier coefficients of
f and fy are related as follows:

f̂y(z) = f̂(z) · χy(z) . (17)

The proof is now obtained by the following calcula-
tion:

F̂z,z = d−2 ·
∑

x,y∈D

f(x − y) · χz(x) · χz(y)

= d−1 ·
∑

y∈D

(
d−1 ·

∑

x∈D

fy(x)χz(x)

)
χz(y)

= d−1 ·
∑

y∈D

f̂y(z) · χz(y)

(17)
= f̂(z) · d−1 ·

∑

y∈D

χy(z)χz(y)
︸ ︷︷ ︸

=1

= f̂(z)

The following calculation verifies (17):

f̂y(z) = d−1 ·
∑

x∈D

f(x − y) · χx(x)

= d−1 ·
∑

x∈D

∑

w∈D

f̂(w) · χw(x − y) · χz(x)

= d−1 ·
∑

x∈D

∑

w∈D

f̂(w) · χw(x) · χw(y) · χz(x)

= d−1 ·
∑

w∈D

(
∑

x∈D

χw(x) · χz(x)

)

︸ ︷︷ ︸
=d·δw,z

f̂(w) · χw(y)

= f̂(z) · χz(y)

Corollary 9 and Lemma 10 yield the following

Corollary 11 Let F denote the matrix with entries
Fx,y = f(x − y). Then the spectrum of (complex)
eigenvalues of d−1 · F coincides with the spectrum
of (complex) Fourier-coefficients of f .

4.3 Margin and Dimension Bounds for
Rotation-invariant Kernels

Let D be a finite Abelian group, and let G be the
subgroup of S(D) that contains all permutations of
the form x 7→ x+ a. Note that |G| = |D|. For every
function f : D → {−1, 1},

µrot(f) := µG(f)

denotes the largest possible average margin that can
be achieved by a linear arrangement for f resulting
from a rotation-invariant kernel. As for the smallest
possible dimension, parameter drot(f) is understood
analogously.

Corollary 12 Let D be a finite Abelian group of
size d. Every function f : D → {−1, 1} satisfies

µrot(f) ≤ ‖f̂‖∞ . (18)

In other words, no large margin classifier that em-
ploys a rotation-invariant kernel can achieve an av-

erage margin for f which exceeds ‖f̂‖∞.



Proof: According to Theorem 5,

µrot(f) ≤ ‖Mf,G‖√
|D| · |G|

=
‖Mf,G‖

d
.

The matrix Mf,G coincides with the matrix F given
by Fx,y = f(x− y) (up to permutation of columns).
We conclude from this and from Corollary 11 that

‖Mf,G‖ = ‖F‖ = d · ‖f̂‖∞ ,

which leads us to inequality (18).

Corollary 6 and 7 combined with Corollary 11
lead us to the following results:

Corollary 13 Let drot(f) denote the smallest di-
mension of a feature space associated with a rotation-
invariant kernel K that allows for a correct repre-

sentation of f . Then, drot(f) ≥ ‖f̂‖−1
∞ .

Corollary 14 Let f̂i denote the (complex) i-th Fourier-

coefficient of f , where |f̂1|, . . . , |f̂d| are in decreasing
order. Then,

drot(f) ·
drot(f)∑

i=1

∣∣∣f̂i

∣∣∣
2

≥ 1

5 Reflection-invariant Functions

A distributed function over D is a real-valued func-
tion over the domain D × D. We will occasionally
identify a distributed function f over D with the
(D × D)-matrix F given by Fx,y = f(x, y).

In this section, we are particularly interested in
distributed functions f(x, y) over D = {−1, 1}n. In
this case, f has 22n Fourier-coefficients that can be
nicely arranged as a matrix F̂ . More precisely:

F̂a,b = f̂(a, b)

= 2−2n ·
∑

(x,y)∈D×D

χ(a,b)(x, y)f(x, y)

= 2−2n ·
∑

x∈D

∑

y∈D

χa(x)χb(y)f(x, y)

In matrix notation, this reads as

F̂ = 2−2n · H · F · H ,

where H denotes the (2n × 2n)-Walsh-matrix.
A distributed function f(x, y) over {−1, 1}n is

said to be reflection-invariant if, for all x, y, a ∈
{−1, 1}n, the following holds:

f(x ◦ a, y ◦ a) = f(x, y) (19)

Distributed functions f(x, y) overRn that satisfy (19)
for all x, y ∈ Rn and every a ∈ {−1, 1}n are said to
be reflection-invariant in the Euclidean space. Here
are some examples:

• A distributed function of the form f(x, y) =
g(x◦y) is reflection-invariant (in the Euclidean
space provided that the domain is Rn):

g((x ◦ a) ◦ (y ◦ a)) = g(x ◦ y ◦ (a ◦ a)) = g(x ◦ y)

Conversely, any reflection-invariant function f(x, y)
(over domain {−1, 1}n) can be written in this
form by setting g(x) := f(x,~e) because reflection-
invariance implies that

f(x, y) = f(x◦y, y◦y) = f(x◦y,~e) = g(x◦y) .

• Because of the obvious identity

χz(x ◦ y) = χz(x) · χz(y) ,

the distributed function χz(x)·χz(y) is reflection-
invariant too.

• The metric

Lp(x − y) =

(
n∑

i=1

|xi − yi|p
)1/p

induced by the Lp-norm is clearly reflection-
invariant in the Euclidean space.

In Section 6, we shall see that many popular kernel
functions happen to be reflection-invariant.

The fact that f(x, y) = g(x ◦ y) is a reflection-
invariant function can be restated as follows: any
function f(x, y) that can be cast as a function in
x1 · y1, . . . , xn · yn is reflection-invariant. Similarly,
any function f(x, y) that can be cast as a function
in Lp(x − y) is reflection-invariant.

We move on and consider the possibility of mak-
ing new reflection-invariant functions from functions
that are already known to be reflection-invariant.
We clearly have the following

Pointwise Closure Property: The pointwise limit
of reflection-invariant functions is a reflection-
invariant function. Furthermore, if f1, . . . , fd

are reflection-invariant functions and g : Rd →R is an arbitrary function, then

g(f1(x, y), . . . , fd(x, y))

is reflection-invariant too.

Sometimes a new distributed function is constructed
from given-ones by means of matrix operations (which,
in general, are not performed pointwise). We claim
that the following holds:

Lemma 15 Reflection-invariant distributed functions
over {−1, 1}n are closed under the usual matrix prod-
uct and under the tensor-product of matrices. More
precisely, let F (x, y) and G(x, y) be two reflection-
invariant distributed functions (here viewed as ma-
trices). Then, the functions (F · G)(x, y) and (F ⊗
G)[(u, x), (v, y)] are reflection-invariant too.



Note that Lemma 15 is an immediate corollary to
Lemma 1.

The following result does not seem to be new.2

We have derived a more general result in Section 4.2
(a section concerned with rotation-invariance with
reflection-invariance as a special case).3

Lemma 16 1. A distributed function f(x, y) over

{−1, 1}n is reflection-invariant iff F̂ is a diag-
onal matrix.

2. Assume that Fx,y = f(x, y) = g(x ◦ y) is a
reflection-invariant distributed function. Then,
matrix F is symmetric, the (real) eigenvalues
of 2−n ·F coincide with the Fourier-coefficients

of g, and ĝ(z) = F̂z,z.

Note that Lemma 8 applied to D = Zn
2 yields the

first statement in Lemma 16. The second statement
in Lemma 16 follows analogously from the subse-
quent results (from Corollary 9 up to Corollary 11).

6 Reflection-invariant Kernels

In this section, we consider kernel functions K(x, y)
over the Boolean or over the Euclidean domain. In
other words, K(x, y) is a distributed function over
{−1, 1}n or over Rn with the additional property
that every finite principal sub-matrix of K is sym-
metric and positive semidefinite. In Section 6.1, we
demonstrate that the family of reflection-invariant
kernels is quite rich and contains many popular ker-
nels. In Section 6.2, we derive some central prop-
erties of reflection-invariant kernels and present an
upper bound on the margin that can be achieved
by a kernel of this type.

6.1 Examples and Closure Properties

Let us start with some examples. The following
(quite popular) kernels (overRn except for the DNF-
Kernel that has a Boolean domain) can be cast as
functions in x1 · y1, . . . , xn · yn or as functions in
‖x − y‖2 and are therefore reflection-invariant:

Polynomial Kernels: K(x, y) = p(x⊤y) for an
arbitrary polynomial p with positive coefficients.

All-subsets Kernel: K(x, y) =
∏n

i=1(1 + xiyi).

ANOVA Kernel: Let 1 ≤ s ≤ n and define

Ks(x, y) =
∑

1≤i1<···<is≤n

s∏

j=1

xij
yij

.

DNF-Kernel: K(x, y) = −1+2−n
∏n

i=1(xiyi +3).

2The second statement of Lemma 16 is mentioned as
well-known in [14] (without providing a pointer to the
literature).

3The results in Section 4.2 might be known as well,
but we are not aware of an appropriate pointer to the
literature.

Exponential Kernels: K(x, y) = ep(x⊤y) for an
arbitrary polynomial p with positive coefficients.

Gaussian Kernel: K(x, y) = e−‖x−y‖2

2
/σ2

for an
arbitrary σ > 0.

These kernels have the usual nice properties like be-
ing efficiently evaluable although the number of (im-
plicitly represented) features is exponentially large
(or even infinite). Polynomial, Exponential, and
Gaussian Kernels (first used in [2]) are found in al-
most any basic text-book that is relevant to the
subject (e.g. [3]). The All-subsets Kernel is found
in [18], and the ANOVA Kernel is found in [19]. As
for the latter two kernels, see also [17]. The DNF-
Kernel has been proposed in [16].4 The reader inter-
ested in more information about these (and other)
kernels may consult the relevant literature. Here,
we simply point to the fact that all kernels men-
tioned above are reflection-invariant.

We move on and consider the possibility of mak-
ing new reflection-invariant kernels from kernels that
are already known to be reflection-invariant. To this
end, we briefly call into mind some basic closure
properties of kernels:

Lemma 17 Let K, K1, K2 be kernels, and let c > 0
be a positive constant. Then, the distributed func-
tions

K1(x, y) + K2(x, y) , c · K(x, y)

K1(x, y) · K2(x, y) , (K1 ⊗ K2)[(u, x), (v, y)]

are kernels too. Moreover, the pointwise limit of
kernels yields a kernel.

The proof of Lemma 17 can be looked-up in [3], for
example.

Corollary 18 If K1, . . . , Kd are kernels and P :Rd → R is a polynomial (or a converging power se-
ries) with positive coefficients, then P (K1(x, y), . . . , Kd(x, y))
is a kernel too.

Note that closure properties of reflection-invariant
functions (see the “Pointwise Closure Property” and
Lemma 15) are comparably strong so that Lemma 17
and Corollary 18 remain valid (mutatis mutandis)
for reflection-invariant kernels.

The following kernels (proposed in [11] and [9],
respectively) define a new kernel-matrix K in terms
of a given symmetric matrix B (called “similarity
matrix” in this context):

4In [16], the kernel is defined over the Boolean do-
main {0, 1}n. Our formula above is obtained from the
formula in [16] by plugging in the affine transformation
that identifies 1 with −1 and 0 with 1. A similar remark
applies to the Monotone DNF-Kernel discussed at the
end of this section.



Exponential Diffusion Kernel: For λ ∈ R, de-
fine

K = eλ·B =
∑

k≥0

λk

k!
· Bk .

von Neumann Diffusion Kernel: For 0 ≤ λ <
‖B‖−1, define

K = (I − λ · B)−1 =
∑

k≥0

λk · Bk .

It follows from the closure properties of reflection-
invariant functions that both diffusion kernels would
inherit reflection-invariance from the underlying sim-
ilarity matrix B.

The family of reflection-invariant kernels is quite
rich. But here are two kernels (the first-one from [16],
and the second-one from [12]) which are counterex-
amples:

Monotone DNF-Kernel:

K(x, y) = −1 + 2−2n
n∏

i=1

(xjyj − xj − yj + 5) .

Spectrum Kernel: Here, x, y ∈ {−1, 1}n are con-
sidered as binary strings. For 1 ≤ p ≤ n and
for every substring u ∈ {−1, 1}p,

Φp
v(x) = |{(u, w) : x = uvw}|

counts how often v occurs as a substring of x.
The p-Spectrum Kernel is then given by

K(x, y) =
∑

v∈{−1,1}p

Φp
v(x) · Φp

v(y) .

It is easy to see that both kernels are not reflection-
invariant. More generally, string kernels (measuring
similarity between strings) often violate reflection-
invariance.

6.2 Properties of Reflection-invariant
Kernels

In the sequel, we shall provide an upper bound on
the average margin (that, a-fortiori, upper-bounds
the guaranteed margin). Recall the definitions of
Section 2.2. Since (2) is valid for any kernel-function,
the condition of reflection-invariance is equivalent to

∀x, y, a ∈ D : 〈Φ(x ◦ a), Φ(y ◦ a)〉 = 〈Φ(x), Φ(y)〉 .

With every function g : D → R and every a ∈ D,
we associate the function ga(x) := g(x ◦ a) and call
it the a-reflection of g. With this notation, we get

Lemma 19 If kernel K is reflection-invariant, then
the following holds for all x, a ∈ D:

‖ΦK(x ◦ a)‖K = ‖ΦK(x)‖K

‖w(α)‖K = ‖w(αa)‖K

In other words, the norm ‖ · ‖K assigns the same
length to all feature vectors, and a reflection of the
dual vector does not change the norm of the induced
weight vector.

Note that Lemma 19 is an immediate corollary to
Lemma 2.

Lemma 20 For every reflection-invariant kernel K,
and every choice of f : D → {−1, 1}, x, a ∈ D, and
α : D → R, the following holds:

µK(fa|αa, x) = µK(f |α, x ◦ a)

Again this is a direct inference of the general results
of Section 3 (see Lemma 3).

Corollary 21 For every reflection-invariant kernel
K, and every choice of f : D → {−1, 1}, a ∈ D,
and α : D → R, the following holds:

µK(fa|αa) = µK(f |α)

µK(fa|αa) = µK(f |α)

µK(fa) = µK(f)

µK(fa) = µK(f)

µinv(fa) = µinv(f)

µinv(fa) = µinv(f)

The punchline of the preceding discussion is the
following result:

Theorem 22 Every Boolean function f satisfies

µinv(f) ≤ ‖f̂‖∞ .

In other words, no large margin classifier that em-
ploys a reflection-invariant kernel can achieve an

average margin for f which exceeds ‖f̂‖∞.

Proof: Let ‖M‖ denote the spectral norm of a ma-
trix M ∈ Rr×s. Recall that the spectral norm of a
symmetric matrix coincides with the largest abso-
lute value found in the spectrum of M ’s eigenvalues.
We shall apply (6) to the matrix F ∈ {−1, 1}D×D

with entries Fx,y = f(x ◦ y) = fy(x). Here, r =
s = |D| = 2n and, according to Lemma 16, ‖F‖ =

2n · ‖f̂‖∞, and (6) now reads as follows:
∑

x∈D

∑

y∈D

fy(x)〈ux, vy〉 ≤ 22n · ‖f̂‖∞ (20)

Assume now, for sake of contradiction, that there
exists a reflection-invariant kernel K and an α :
D → R such that the following holds:

µK(f |α) = 2−n
∑

x∈D

f(x) · 〈w(α), Φ(x)〉
‖w(α)‖ · ‖Φ(x)‖ (21)

> ‖f̂‖∞ (22)

According to Corollary 21, µK(f |α) = µK(fy|αy)
for every y ∈ D. Thus, the inequality µK(fy|αy) >

‖f̂y‖∞ holds as well. Note, however, that ‖f̂y‖∞ =

‖f̂‖∞. Summing over all y ∈ D and multiplying
both hand-sides in (21), (22) by 2n, we obtain

∑

x,y∈D

fy(x) · 〈w(αy), Φ(x)〉
‖w(αy)‖ · ‖Φ(x)‖ > 22n · ‖f̂‖∞ .



Setting ux := Φ(x)/‖Φ(x)‖ and vy := w(αy)/‖w(αy)‖,
we arrived at a contradiction to (20).

So by using the algorithm of Kushilevitz and
Mansour [20] one can estimate the largest Fourier-
coefficient of a specific function f to determine an
upper bound for the maximal achievable average
margin.

In analogy to Corollaries 6 and 7, we obtain the
following results:

Corollary 23 Let dinv(f) denote the smallest di-
mension of a feature space associated with a reflection-
invariant kernel K that allows for a correct repre-

sentation of f . Then, dinv(f) ≥ ‖f̂‖−1
∞ .

Proof: Similarly to Corollary 6 the corresponding
feature space for the kernel must have dimension at
least

√
|D| · |G|/‖Mf,G‖. Here, it is 2n/‖F‖. Since

‖F‖ = 2n · ‖f̂‖∞, we are done.

Corollary 24 Let f̂i denote the i-th Fourier-coefficient

of f , where |f̂1|, . . . , |f̂2n | are in decreasing order.
Then, dinv(f) satisfies the following lower bound:

dinv(f) ·
dinv(f)∑

i=1

∣∣∣f̂i

∣∣∣
2

≥ 1 (23)

Proof: According to (7)

dG(f) ·
dG(f)∑

i=1

σ2
i ≥ 1 (24)

holds. We apply this result to the matrix F definied
in the proof of Theorem 22. Here, r = s = 2n.

Moreover, σi(F ) = 2n|f̂i| according to Lemma 16,
because σi(A) = |λi(A)| when A is symmetric. (Here,
λi(A) is the sequence of eigenvalues in decreasing
order of their absolute values.) Plugging this into
(24), we obtain (23).

7 Open Problems

Haasdonk and Burkhardt [8] consider two notions
of invariance: “simultaneous invariance” and “to-
tal invariance”. Simultaneous invariance very much
corresponds to the notion of invariance that we dis-
cussed in section 3 so that our margin and dimen-
sion bounds apply. Total invariance is a stronger
notion so that our bounds apply more than ever.
But the obvious challenge is to find stronger margin
and dimension bounds for totally invariant kernels.

The basic idea behind our paper is roughly as
follows. For a family of kernels (e.g., polynomial
kernels), we argue that the existence a “good rep-
resentation” for a particular target function implies
the existence of a “good representation” for a whole
family of target functions (so that classical margin

and dimension bounds can be brought into play).
We think that invariance under a group operation
(the notion considered in this paper) is just the first
obvious thing one should consider. We would like
to develop more versatile techniques that, while fol-
lowing the same basic idea, lead to strong margin
and dimension bounds for a wider class of kernels.
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