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Abstract
A fully supervised learner needs access to correctly labeled examples whereas a semi-supervised
learner has access to examples part of which are labeled and part of which are not. The hope is
that a large collection of unlabeled examples significantly reduces the need for labeled-ones. It
is widely believed that this reduction of “label complexity” is marginal unless the hidden target
concept and the domain distribution satisfy some “compatibility assumptions”. There are some
recent papers in support of this belief. In this paper, we revitalize the discussion by presenting
a result that goes in the other direction. To this end, we consider the PAC-learning model in
two settings: the (classical) fully supervised setting and the semi-supervised setting. We show
that the “label-complexity gap” between the semi-supervised and the fully supervised setting
can become arbitrarily large for concept classes of infinite VC-dimension (or sequences of classes
whose VC-dimensions are finite but become arbitrarily large). On the other hand, this gap is
bounded by O(ln |C|) for each finite concept class C that contains the constant zero- and the
constant one-function. A similar statement holds for all classes C of finite VC-dimension.
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1 Introduction

In the PAC1-learning model [11], a learner’s input are samples, labeled correctly according
to an unknown target concept, and two parameters ε, δ > 0. He has to infer, with high
probability of success, an approximately correct binary classification rule, which is called
“hypothesis” in this context. In the non-agnostic setting (that we focus on in this paper), the
following assumptions are made:

There is a concept class C (known to the learner) so that the “correct” labels are assigned
to the instances x from the underlying domain X by a function c : X → {0, 1} from C

(the unknown target function).
There is a probability distribution P on X (unknown to the learner) so that the samples
(labeled according to c) are independently chosen at random according to P .

The learner is considered successful if his hypothesis h satisfies P [h(x) 6= c(x)] < ε (approxi-
mate correctness).2 The probability for success should be larger than 1− δ (so the learner’s

∗ This work was supported by the bilateral Research Support Programme between Germany (DAAD
50751924) and Hungary (MÖB 14440).

1 PAC = Probably Approximately Correct
2 Note, that we don’t require the learner to observe that his hypothesis is accurate to be successful.
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hypothesis is probably approximately correct). The learner is called proper if he commits
himself to picking his hypothesis from C. We refer to ε as the accuracy parameter, or simply
as the accuracy, and we refer to δ as the confidence parameter, or simply as the confidence.

Providing a learner with a large collection of labeled samples is expensive because reliable
classification labels are typically generated by a human expert. On the other hand, unlabeled
samples are easy to get (e.g., can be collected automatically from the web). This raised the
question whether the “label complexity” of a learning problem can be significantly reduced
when learning is “semi-supervised”, i.e., if the learner is not only provided with labeled
samples but also with unlabeled-ones.3 The existing analysis of the semi-supervised setting
can be summarized roughly as follows:

The benefit of unlabeled samples can be enormous if the target concept and the domain
distribution satisfy some suitable “compatibility assumptions” (see [1]).
On the other hand, the benefit seems to be marginal if we do not impose any extra-
assumptions (see [2, 7]).

These findings perfectly match with the common belief that some kind of compatibility
between the target concept and the domain distribution is needed for adding horsepower
to semi-supervised algorithms. However, the results of the second type are not yet fully
convincing:

The paper [2] provides some upper bounds on the label complexity in the fully supervised
setting and some lower bounds, that match up to a small constant factor, in the semi-
supervised setting (or even in the setting with a distribution P that is known to the
learner). These bounds however are established only for some special concept classes over
the real line. It is unclear whether they generalize to a broader variety of concept classes.
The paper [7] analyzes arbitrary finite concept classes and shows the existence of a purely
supervised “smart” PAC-learning algorithm whose label consumption exceeds the label
consumption of the best learner with full prior knowledge of the domain distribution
at most by a constant factor for the “vast majority” of pairs (c, P ). This however does
not exclude the possibility that there still exist “bad pairs” (c, P ) leading to a poor
performance of the smart learner.

In this paper, we reconsider the question whether unlabeled samples can be of significant
help to a learner even when we do not impose any extra-assumptions on the PAC-learning
model. A comparably old paper, [8], indicates that an affirmative answer to this question is
thinkable (despite of the fact that it was written a long time before semi-supervised learning
became an issue). In [8] it is shown that there exists a concept class C∞ and a family P∞ of
domain distributions such that the following holds:
1. For each P ∈ P∞, C∞ is properly PAC-learnable under the fixed distribution P (where

“fixed” means that the learner has full prior knowledge of P ).
2. C∞ is not properly PAC-learnable under unknown distributions taken from P∞.
These results point into the right direction for our purpose, but they are not precisely what
we want:

Although “getting a large unlabeled sample” comes close to “knowing the domain distribu-
tion”, it is not quite the same. (In fact, one can show that C∞, with domain distributions
taken from P∞, is not PAC-learnable in the semi-supervised setting.)

3 In contrast to the setting of “active learning”, we do however not assume that the learner can actively
decide for which samples the labels are uncovered.



Malte Darnstädt, Hans Ulrich Simon, and Balázs Szörényi 3

The authors of [8] do not show that C∞ is not PAC-learnable under unknown distributions
P taken from P∞. In fact, their proof uses a target concept that almost surely (w.r.t. P )
assigns 1 to every instance in the domain. But the (proper!) learner must not return the
constant 1-function of error 0 because of his commitment to hypotheses from C∞.

Main Results:
The precise statement of our main results requires some more notation. For any concept

class C over domain X and any domain distribution P , let mC,P (ε, δ) denote the smallest
number of labeled samples (in dependence of the accuracy ε and the confidence δ) needed to
PAC-learn C under fixed distribution P . For any concept class C and any (semi-supervised
or fully supervised) PAC-learning algorithm A, let mA

C,P (ε, δ) denote the smallest number
of labeled samples such that the resulting hypothesis of A is ε-accurate with confidence δ
provided that P , unknown to A, is the underlying domain distribution. We first investigate
the conjecture (up to minor differences identical to Conjecture 4 in [2])4 that there is a
purely supervised learner whose label consumption exceeds the label consumption of the best
learner with full prior knowledge of the domain distribution at most by a factor k(C) that
depends on C only, as opposed to a dependence on ε or δ. The following result, whose proof
is found in Section 3.1, confirms this conjecture to a large extent for finite classes, and to a
somewhat smaller extent for classes of finite VC-dimension:

I Theorem 1. Let C be a concept class over domain X that contains the constant zero- and
the constant one-function. Then:
1. If C is finite, there exists a fully supervised PAC-learning algorithm A such that, for

every domain distribution P , mA
C,P (2ε, δ) = O(ln |C|) ·mC,P (ε, δ).

2. If the VC-dimension of C is finite, there exists a fully supervised PAC-learning algorithm
A such that, for every domain distribution P , mA

C,P (2ε, δ) = O(VCdim(C) · log(1/ε)) ·
mC,P (ε, δ) = Õ(VCdim(C)) ·mC,P (ε, δ).

Can we generalize Theorem 1 to concept classes C of infinite VC-dimension provided that
the domain distribution is taken from a family P such that mC,P (ε, δ) <∞ for all P ∈ P?
This question will be answered to the negative by the following result (proved in Section 3.2):

I Theorem 2. There exists a concept class C∗ over domain {0, 1}∗ and a family P∗ of
domain distributions such that the following holds:
1. There exists a semi-supervised algorithm A such that, for all P ∈ P∗, mA

C∗,P
= O(1/ε2 +

log(1/δ)/ε). (This implies the same upper bound on mC∗,P for all P ∈ P∗.)
2. For every fully supervised algorithm A and for all ε < 1/2, δ < 1:

supP∈P∗
mA
C∗,P

(ε, δ) =∞.
Does there exist a universal constant k (not depending on C) such that we get a result similar
to Theorem 1 but with k(C) replaced by k? The following result (proved in Section 3.2)
shows that, even for classes of finite VC-dimension, such a universal constant does not exist.

I Theorem 3. There exists a sequence (Cn)n≥1 of concept classes over domains ({0, 1}n)n≥1
such that limn→∞VCdim(Cn) =∞ and a sequence (Pn)n≥1 of domain distribution families
such that the following holds:
1. There exists a semi-supervised algorithm A that PAC-learns (Cn)n≥1 under any unknown

distribution and, for all P ∈ Pn, mA
Cn,P

(ε, δ) = O(1/ε2 + log(1/δ)/ε). (This implies the
same upper bound on mCn,P for all P ∈ Pn.)

4 In contrast to [2], we allow the supervised learner to be twice as inaccurate as the semi-supervised
learner because, otherwise, it can be shown that results in the manner of Theorem 1 are impossible
even for simple classes.
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2. For every fully supervised algorithm A and all ε < 1/2, δ < 1:
supn≥1,P∈Pn

mA
Cn,P

(ε, δ) =∞.
Some comments are in place here:

Since the class C∗ from Theorem 2 has a countable domain, namely {0, 1}∗, C∗ occurs (via
projection) as a subclass in every concept class that shatters a set of infinite cardinality. A
similar remark applies to the sequence (Cn)n≥1 and concept classes that shatter finite sets
of arbitrary size. Thus every concept class of infinite VC-dimension contains subclasses
that are significantly easier to learn in the semi-supervised setting of the PAC-model (in
comparison to the full supervised setting).
An error bound ε = 1/2 is trivially achieved by random guesses for the unknown label.
Let α and β be two arbitrary small, but strictly positive, constants. Theorems 2 and 3
imply that even the modest task of returning, with a success probability of at least α, a
hypothesis of error at most 1/2− β cannot be achieved in the fully supervised setting
unless the number of labeled examples becomes arbitrarily large.
Theorem 3 implies that the results from [2] do not generalize (from the simple classes
discussed there) to arbitrary finite classes. It implies furthermore that the “bad pairs”
(c, P ) occurring in the main result from [7] are unavoidable and not an artifact of the
analysis in that paper.
Cn is not an artificially constructed or exotic class: it is in fact the class of non-negated
literals over n boolean variables, which occurs as a subset of many popular concept classes
(e.g. monomials, decision lists, half spaces). The class C∗ is a natural generalization of
Cn to the set of boolean strings of arbitrary length.
The classes C∗,P∗ from Theorem 2, defined in Section 3.2, are close relatives of the
classes C∞,P∞ from [8], but the adversary argument that we have to employ is much
more involved than the corresponding argument in [8] (where the learner was assumed to
be proper and had been fooled mainly because of his commitment to hypotheses from
C∞).

2 Definitions, Notations and Facts

For any n ∈ N, we define [n] = {1, . . . , n}. The symmetric difference between two sets A
and B is denoted A ⊕ B, i.e., A ⊕ B = (A \ B) ∪ (B \ A). The indicator function I(cond)
yields 1 if “cond” is a true condition, and 0 otherwise.

2.1 Prerequisites from Probability Theory
Let X be an integer-valued random variable. As usual, a most likely value a for X is called
a mode of X. In this paper, the largest integer that is a mode of X is denoted mode(X). As
usual, X is said to be unimodal if Pr[X = x] is increasing with x for all x ≤ mode(X), and
decreasing with x for all x ≥ mode(X).

Let Ω be a space equipped with a σ-algebra of events and with a probability measure P .
For any sequence (An)n≥1 of events, lim supn→∞An is defined as the set of all ω ∈ Ω that
occur in infinitely many of the sets An, i.e., lim supn→∞An = ∩∞n=1 ∪∞m=n Am. We briefly
remind the reader of the Borel-Cantelli Lemma:

I Lemma 4 ([9]). Let (An)n≥1 be a sequence of independent events, and let A = lim supn→∞An.
Then P (A) = 1 if

∑∞
n=1 P (An) =∞, and P (A) = 0 otherwise.
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I Corollary 5. Let (An)n≥1 be a sequence of independent events such that
∑∞
n=1 P (An) =∞.

Let Bk,n be the set of all ω ∈ Ω that occur in at least k of the events A1, . . . , An. Then, for
any k ∈ N, limn→∞ P (Bk,n) = 1.

Proof. Note that Bk,n ⊆ Bk,n+1 for every n. Since probability measures are continuous from
below, it follows that limn→∞ P (Bk,n) = P (∪∞n=1Bk,n). Since, obviously, lim supn→∞An ⊆
∪∞n=1Bk,n, an application of the Borel-Cantelli Lemma yields the result. J

The following result, which is a variant of the Central Limit Theorem for triangular
arrays, is known in the literature as the Lindeberg-Feller Theorem:

I Theorem 6 ([6]). Let (Xn,i)n∈N,i∈[n] be a (triangular) array of random variables such that
1. E[Xn,i] = 0 for all n ∈ N, i = 1, . . . , n.
2. Xn,1, . . . , Xn,n are independent for every n ∈ N.
3. limn→∞

∑n
i=1E[X2

n,i] = σ2 > 0.
4. For each ε > 0, limn→∞ sn(ε) = 0 where sn(ε) =

∑n
i=1E[X2

n,iI(|Xn,i| ≥ ε)].
Then limn→∞ P

[
a < 1

σ ·
∑n
i=1 Xn,i < b

]
= ϕ(b)−ϕ(a) where ϕ denotes the density function

of the standard normal distribution.

An easy padding argument shows that this theorem holds “mutatis mutandis” for triangular
arrays of the form (Xnk,i) where i = 1, . . . , nk and (nk)k≥1 is an increasing and unbounded
sequence of positive integers. (The limes is then taken for k →∞.) We furthermore note that,
for the special case of independent Bernoulli variables Xn,i with probability pi of success,
Theorem 6 applies to the triangular array (Xn,i − pi)/σn where σ2

n =
∑n
i=1 pi(1− pi). (A

similar remark applies to the more general case of bounded random variables.)
The following result is an immediate consequence of Theorem 6 (plus the remarks

thereafter):

I Lemma 7. Let l(k) = o(
√
k). Let (nk)k≥1 be an increasing and unbounded sequence of

positive integers. Let (pk,i)k∈N,i∈[nk] range over all triangular arrays of parameters in [0, 1]
such that

∀k ∈ N :
nk∑
i=1

pk,i(1− pk,i) ≥ k . (1)

Let (Xk,i)k∈N,i∈[nk] be the corresponding triangular array of row-wise independent Bernoulli
variables. Then the function h given by

h(k) = sup
(pk,i)

sup
s∈{0,...,nk}

P

[∣∣∣∣∣
nk∑
i=1

Xk,i − s

∣∣∣∣∣ < l(k)
]

approaches 0 as k approaches infinity.

Proof. Assume for sake of contradiction that lim supk→∞ h(k) > 0. Then there exist (pk,i)
satisfying (1) and sk ∈ {0, . . . , nk} such that

lim sup
k→∞

P

[∣∣∣∣∣
nk∑
i=1

Xk,i − sk

∣∣∣∣∣ < l(k)
]
> 0 . (2)

The random variable Sk =
∑nk

i=1 Xk,i has mean µk =
∑nk

i=1 pk,i and variance σ2
k =

∑nk

i=1 pk,i ·
(1 − pk,i) ≥ k. The Lindeberg-Feller Theorem applied to the triangular array

(
Xk,i−pi

σk

)
yields

lim
k→∞

P

[
a <

Sk − µk
σk

< b

]
= ϕ(b)− ϕ(a) . (3)
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For Sk to hit a given interval of length 2l(k) (like the interval [sk − l(k), sk + l(k)] in (2))
it is necessary for (Sk − µk)/σk to hit a given interval of length 2l(k)/σk. Note that
limk→∞ l(k)/σk = 0 because σk ≥

√
k and l(k) = o(

√
k). Thus the hitting probability

approaches 0 as k approaches infinity. This contradicts to (2). J

For ease of later reference, we let k(β) for β > 0 be a function such that h(k) ≤ β for all
k ≥ k(β). (Such a function must exist according to Lemma 7.)

I Corollary 8. With the notation and assumptions from Lemma 7, the following holds: the
probability mass of the mode of

∑nk

i=1 Xk,i is at most β for all k ≥ k(β).

The following result implies the unimodality of binomially distributed random variables:

I Lemma 9 ([10]). Every sum of independent Bernoulli variables (with possibly different
probabilities of success) is unimodal.

2.2 Prerequisites from Learning Theory
A concept class C over domain X is a family of functions from X to {0, 1}. C is said to be
PAC-learnable with sample size m(ε, δ) if there exists a (possibly randomized) algorithm A

with the following property. For every concept c ∈ C, for every distribution P on X, and
for all ε, δ > 0 and m = m(ε, δ), if ~x = (x1, . . . , xm) is drawn at random according to Pm,
~b = (c(x1), . . . , c(xm)), and A is given access to ε, δ, ~x,~b, then, with probability greater than
1 − δ, A outputs a hypothesis h : X → {0, 1} such that P [h(x) = c(x)] > 1 − ε. We say
that h is ε-accurate (resp. ε-inaccurate) if P [h(x) = c(x)] > 1− ε (resp. P [h(x) 6= c(x)] ≥ ε).
We say the learner fails when he returns an ε-inaccurate hypothesis. As mentioned in the
introduction already, we refer to ε as the accuracy and to δ as the confidence. In this paper,
we consider the following variations of the basic model:
Proper PAC-learnability: The hypothesis h : X → {0, 1} must be a member of C.
PAC-learnability under a fixed distribution: P is fixed and known to the learner.
The semi-supervised setting: The input of the learning algorithm is augmented by a finite

number (depending on the various parameters of the learning task) of unlabeled samples.
All samples, labeled- and unlabeled-ones, are drawn independently from X according to
the domain distribution P .

Note that PAC-learnability with sample size m(ε, δ) under a fixed distribution follows from
PAC-learnability with sample size m(ε, δ) in the semi-supervised setting because, if A knows
the domain distribution P , it can first generate sufficiently many unlabeled samples and then
run a simulation of the semi-supervised learning algorithm.

Throughout the paper, a mapping from X to {0, 1} is identified with the set of instances
from X that are mapped to 1. Thus, concepts are considered as mappings from X to {0, 1}
or, alternatively, as subsets of X. (E.g., we may write P (h⊕ c) instead of P [h(x) 6= c(x)].)
X ′ ⊆ X is said to be shattered by C if {X ′ ∩ c| c ∈ C} coincides with the powerset of X ′.
The VC-dimension of C, denoted VCdim(C), is infinite if there exist arbitrarily large sets
that are shattered by C, and it is the size of the largest set shattered by C otherwise. We
remind the reader to the following well-known results:

I Lemma 10 ([4]). A finite class C is properly PAC-learnable by any consistent hypothesis
finder from dln(|C|/δ)/εe labeled samples.

I Lemma 11 ([5]). A class C of finite VC-dimension is properly PAC-learnable by any
consistent hypothesis finder from O((VCdim(C) · log(1/ε) + log(1/δ))/ε) labeled samples.
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C ′ ⊆ C is called an ε-covering of C with respect to P if for any c ∈ C there exists c′ ∈ C ′
such that P (c⊕ c′) < ε. The covering number NC,P (ε) is the size of the smallest ε-covering
of C with respect to P . With this notation, the following holds:

I Lemma 12 ([3]). A concept class C is properly PAC-learnable under a fixed distribution
P from O(log(NC,P (ε/2)/δ)/ε) labeled samples.

A result by Balcan and Blum5 implies the same upper bound on the label complexity for
semi-supervised algorithms and concept classes of finite VC-dimension:

I Lemma 13 ([1]). Let C be a concept class of finite VC-dimension. Then C is PAC-learnable
in the semi-supervised setting from O(VCdim(C) log(1/ε)/ε2 + log(1/δ)/ε2) unlabeled and
O(log(NC,P (ε/6)/δ)/ε) labeled samples.

The following game between the learner and his adversary is useful for proving lower
bounds on the sample size m:
Step 1: An “adversary” fixes a probability distribution D on pairs of the form (c, P ) where

c ∈ C and P is a probability distribution on the domain X.
Step 2: The target concept c and the domain distribution P (representing the learning task)

are chosen at random according to D.
Step 3: (x1, . . . , xm) is drawn at random according to Pm, and ε, δ, (x1, . . . , xm), (b1, . . . , bm)

such that bi = c(xi) is given as input to the learner.
Step 4: The adversary might give additional pieces of information to the learner.6
Step 5: The learner returns a hypothesis h. He “fails” if P [h(x) 6= c(x)] ≥ ε.
This game differs from the PAC-learning model mainly in two respects. First, the learner is
not evaluated against the pair (c, P ) on which he performs worst but on a pair (c, P ) chosen
at random according to D (albeit D is chosen by an adversary). Second, the learner possibly
obtains additional pieces of information in Step 4. Since both maneuvers can be to the
advantage of the learner only, they do not compromise the lower bound argument. Thus, if
we can show that, with probability at least δ, the learner fails in the above game, we may
conclude that the sample size m does not suffice to meet the (ε, δ)-criterion of PAC-learning.
Moreover, according to Yao’s principle [12], lower bounds obtained by this technique even
apply to randomized learning algorithms.

3 The Semi-supervised Versus the Purely Supervised Setting

This section is devoted to the proofs of our main results. The proof for Theorem 1 is presented
in Section 3.1. The proofs for Theorems 2 and 3 are presented in Section 3.2.

3.1 Proof of Theorem 1
We start with the following lower bound on mC,P (ε, δ):

I Lemma 14. Let C be a concept class and let P be a distribution on domain X. For any
ε > 0, let

dεeC,P = min{ε′| (ε′ ≥ ε) ∧ (∃c, c′ ∈ C : P (c⊕ c′) = ε′}

5 Apply Theorem 13 from [1] with a constant compatibility of 1 for all concepts and distributions.
6 This step has purely proof-technical reasons: sometimes the analysis becomes simpler when the power
of the learner is artificially increased.
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where, by convention, the minimum of an empty set equals ∞. With this notation, the
following holds:
1. If d2εeC,P ≤ 1, then mC,P (ε, δ) ≥ 1.
2. Let γ = 1− d2εeC,P . If d2εeC,P < 1, then

mC,P (ε, δ) ≥ log1/γ
1
2δ = Ω

(
log1/γ

1
δ

)
. (4)

3. If d2εeC,P ≤ 1/4, then

mC,P (ε, δ) ≥
⌊

ln(1/(2δ))
2d2εeC,P

⌋
= Ω

(
ln(1/δ)
d2εeC,P

)
. (5)

Proof. It is easy to see that at least one labeled sample is needed if d2εeC,P ≤ 1. Let
us now assume that d2εeC,P < 1. Let c, c′ ∈ C be chosen such that P (c ⊕ c′) = d2εeC,P .
The adversary picks c and c′ as target concept with probability 1/2, respectively. With a
probability of (1− d2εeC,P )m, none of the labeled samples hits c⊕ c′. Since P (c⊕ c′) ≥ 2ε,
the learner has no hypothesis at his disposal that is ε-accurate for c and c′. Thus, if none the
samples distinguishes between c and c′, the learner will fail with a probability of 1/2. We can
conclude that the learner fails with an overall probability of at least 1

2 (1−d2εeC,P )m = 1
2γ

m.
Setting this probability less than or equal to δ and solving for m leads to the lower

bound (4). If d2εeC,P ≤ 1/4, a straightforward computation shows that 1
2γ

m is bounded from
below by 1

2 exp(−2d2εeC,Pm). Setting this expression less than or equal to δ and solving for
m leads to the lower bound (5). J

We are ready now for the Proof of Theorem 1:
We use the notation from Lemma 14. We first present the main argument under the (wrong!)
assumption that dεeC,P is known to the learner. At the end of the proof, we explain how a
fully supervised learning algorithm can compensate for not knowing P . The first important
observation, following directly from the definition of dεeC,P , is that, in order to achieve an
accuracy of ε, it suffices to achieve an accuracy dεeC,P with a hypothesis from C. Thus,
for the purpose of Theorem 1, it suffices to have a supervised proper learner that achieves
accuracy d2εeC,P with confidence δ. We proceed with the following case analysis:
Case 1: d2εeC,P ≤ 1/4.

There is a gap of O(ln |C|) only between the upper bound from Lemma 10 (with d2εeC,P
in the role of ε) and the lower bound (5). Returning a consistent hypothesis, so that
Lemma 10 applies, is appropriate in this case.

Case 2: 1/4 < d2εeC,P < 15/16.
We may argue similarly as in Case 1 except that the upper bound from Lemma 10 is
compared to the lower bound (4). (Note that γ = θ(1) in this case.) As in Case 1,
returning a consistent hypothesis is appropriate.

Case 3: 15/16 < d2εeC,P < 1.
In this case 0 < γ = 1 − d2εeC,P < 1/16. The learner will exploit the fact that one of
the hypotheses ∅ and X is a good choice. He returns hypothesis X if label “1” has the
majority within the labeled samples, and hypothesis ∅ otherwise. Let c, as usual, denote
the target concept. If γ < P (c) < 1− γ, then both of ∅ and X are d2εeC,P -accurate. Let
us assume that P (c) ≤ γ. (The case P (c) ≥ 1 − γ is symmetric.) The learner will fail
only if, despite of the small probability γ for label “1”, these labels have the majority. It
is easy to see that the probability for this to happen is bounded by (m/2)

(
m
m/2
)
γm/2 and

therefore also bounded by 23m/2γm/2 = (8γ)m/2. Setting the last expression less than
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or equal to δ and solving for m reveals that O(log1/γ(1/δ)) many labeled samples are
enough. This matches the lower bound (4) modulo a constant factor.

Case 4: d2εeC,P = 1.
This is a trivial case where each labeled sample almost surely makes inconsistent any
hypothesis h ∈ C of error at least ε. The learner may return any hypothesis that is
supported by at least one labeled sample.

Case 5: d2εeC,P =∞.
This is another trivial case where any concept from C is 2ε-accurate with respect to any
other concept from C. The learner needs no labeled example and may return any h ∈ C.

In any case, the “label-complexity” gap is bounded by O(ln |C|). We finally have to explain
how this can be exploited by a supervised learner A who does not have any prior knowledge
of P . The main observation is that, according to the bound in Lemma 10, the condition
m > dln(|C|/δ)/(15/16)e indicates that the sample size is large enough to achieve an accuracy
below 15/16 so that returning a consistent hypothesis is the appropriate action (as in Cases
1 and 2 above). If, on the other hand, the above condition on m is violated, then A will set
either h = ∅ or h = X depending on which label holds the majority (which would also be an
appropriate choice in Cases 3 and 4 above). It is not hard to show that this procedure leads
to the desired performance, which concludes the proof for the first part of Theorem 1.
As for the second part, one can use a similar argument that employs Lemma 11 instead of
Lemma 10.

3.2 Proof of Theorems 2 and 3
Throughout this section, we set Xn = {0, 1}n and X∗ = {0, 1}∗. We will identify a finite
string x ∈ X∗ with the infinite string that starts with x and ends with an infinite sequence
of zeros. C∗ denotes the family of functions ci : X∗ → {0, 1}, i ∈ N∪ {0}, given by c0(x) = 0
and ci(x) = xi for all i ≥ 1. Note that ci(x) = 0 for all i > |x|. Cn denotes the class of
functions obtained by restricting a function from C∗ to the subdomain Xn. For every i ≥ 1,
let pi = 1/ log(3 + i). For every permutation σ of 1, . . . , n, let Pσ be the probability measure
on Xn obtained by setting xσ(i) = 1 with probability pi (resp. xσ(i) = 0 with probability
1− pi) independently for i = 1, . . . , n. Pn = {Pσ} denotes the family of all such probability
measures on Xn. Note that Pσ can also be considered as a probability measure on X∗ (that
is centered on Xn). P∗, a family of probability measures on X∗, is defined as ∪n≥1Pn.

I Lemma 15. 1. C∗ is properly PAC-learnable under any fixed distribution Pσ ∈ P∗ from
O(1/ε2 + log(1/δ)/ε) labeled samples.

2. For any (unknown) Pσ ∈ P∗, C∗ is properly PAC-learnable in the semi-supervised setting
from O(log(n/δ)/ε) unlabeled and O(1/ε2 + log(1/δ)/ε) labeled samples. Here, n denotes
the smallest index such that Pσ ∈ Pn.

3. There exists a semi-supervised algorithm A that PAC-learns Cn under any unknown
domain distribution. Moreover, for all P ∈ Pn, mA

Cn,P
(ε, δ) = O(1/ε2 + log(1/δ)/ε).

Proof. 1. Let σ be a permutation of 1, . . . , n. For all i > n: ci = ∅ almost surely w.r.t. Pσ.
For all 22/ε−3 ≤ i ≤ n: Pσ[cσ(i)⊕∅] = Pσ[cσ(i)] = pi ≤ ε/2. Thus, setting N = d22/εe−4,
{∅, cσ(1), . . . , cσ(N)} forms an ε/2-covering of C∗ with respect to Pσ. An application of
Lemma 12 now yields the result.

2. The very first unlabeled sample reveals the parameter n such that the unknown measure
Pσ is centered on Xn. Note that, for every i ∈ [n], xi = 1 with probability pσ−1(i). It is an
easy application of the multiplicative Chernov-bound (combined with the Union-bound)
to see that O(log(n/δ)/ε) unlabeled samples suffice to retrieve (with probability 1− δ/2
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of success) an index set I ⊂ [n] with the following properties. On one hand, I includes
all i ∈ [n] such that pσ−1(i) ≥ ε/2. On the other hand, I excludes all i ∈ [n] such that
pσ−1(i) ≤ ε/8. Consequently {∅} ∪ {ci| i ∈ I} is an ε/2-covering of Cn with respect to Pσ
and its size is bounded by 1 + |I| ≤ 28/ε. Another application of Lemma 12 now yields
the result.

3. The third statement in Lemma 15 is an immediate consequence of Lemma 13 and the
fact that, as proved above, NCn

(ε/6) = 2O(1/ε) (regardless of the value of n). J

I Lemma 16. Let A be a fully supervised algorithm designed to PAC-learn C∗ under any
unknown distribution taken from P∗. For every finite sample size m and for all α, β > 0,
an adversary can achieve the following: with a probability of at least 1− α the hypothesis
returned by A has an error of at least 1/2− β.7

Proof. The proof will run through the following stages:
1. We first fix some technical notations and conditions (holding in probability) which the

proof builds on.
2. Then we specify the strategy of the learner’s adversary.
3. We argue that, given the strategy of the adversary, the learner has probably almost no

advantage over random guesses.
4. We finally verify the technical conditions.
Let us start with Stage 1. (Though somewhat technical it will help us to provide a precise
description of the subsequent stages.) Let M ∈ {0, 1}(m+1)×(N\{1}) be a random matrix
(with columns indexed by integers not smaller than 2) such that the entries are independent
Bernoulli variables where the variable Mi,j has probability pj = 1/ log(3 + j) < 1/2 of
success. Let M(n) denote the finite matrix composed of the first n− 1 columns of M . Let
k = max{d1/αe, k(2β)} where k(β) is the function from the remark right after Lemma 7. In
Stage 4 of the proof, we will show that there exists n = nk ∈ N such that, with probability
at least 1− 1/k, the following conditions are valid for each bit pattern b ∈ {0, 1}m+1:
(A) b ∈ {0, 1}m+1 coincides with at least 4k2 columns of M(n).
(B) Let b′ ∈ {0, 1}m be the bit pattern obtained from b by omission of the final bit. Call

column j ≥ 2 of M(n) “marked” if its first m bits yield pattern b′. Let I ⊆ {2, . . . , n}
denote the set of indices for marked columns. Then,

∑
i∈I pi ≥ 2k so that

∑
i∈I pi(1−pi) ≥

k (because pi < 1/2).
The strategy of the adversary (Stage 2 of the proof) is as follows: she sets n = nk, picks
a permutation σ of 1, . . . , n uniformly at random, chooses domain distribution Pσ, and
selects the target concept ct such that t = σ(1). In the sequel, probabilities are simply
denoted P [·]. Note that the component xt of a sample x can be viewed as a fair coin since
P [xt = 1] = p1 = 1/ log(4) = 1/2. The learning task resulting from this setting is related to
the technical definitions and conditions from Stage 1 as follows:

The first m rows of the matrix M(n) are the components σ(2), . . . , σ(n) of the m labeled
samples.
The bits of b′ ∈ {0, 1}m are the t-th components of the m labeled samples. These bits
are perfectly random, and they are identical to the classification labels.
The set I ⊆ {2, . . . , n} points to all marked columns of M(n), i.e., it points to all columns
of M(n) which are duplicates of b′.
Row m + 1 of M represents an unlabeled test sample that has to be classified by the
learner.

7 Loosely speaking, the learner has “probably almost no advantage over random guesses”.
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The adversary passes also the set J = {σ(i)| i ∈ I ∪ {1}}, with the understanding that
index t of the target concept is an element of J , and the set I ⊆ {2, . . . , n} as additional
information to the learner. This maneuver marks the end of Stage 2 in our proof.
We now move on to Stage 3 of the proof and explain why the strategy of the adversary leads
to a poor learning performance (thereby assuming that conditions (A) and (B) hold). Note
that, by symmetry, every index in J has the same a-posteriori probability to coincide with
t. Because the learner has no way to break the symmetry between the indices in J before
he sees the test sample x, the best prediction for the label of x does not depend on the
individual bits in x but only on the number of ones in the bit positions from J , i.e., it only
depends on the value of

Y ′ =
∑
j∈J

xj = xσ(1) +
∑
i∈I

xσ(i) = xσ(1) + Y where Y =
∑
i∈I

xσ(i) =
∑
i∈I

Mm+1,i .

Note that the learner knows the distribution of Y (given by the parameters (pi)i∈I) since
the set I had been passed on to him by the adversary. For sake of brevity, let ` = xσ(1)
denote the classification label of the test sample x. Given a value s of Y ′ (and the fact that
the a-priori probabilities for ` = 0 and ` = 1 are equal), the Bayes decision is in favor of
the label ` ∈ {0, 1} which maximizes P [Y ′ = s|`]. Clearly, P [Y ′ = s|` = 1] = P [Y = s− 1]
and P [Y ′ = s|` = 0] = P [Y = s]. Thus, the Bayes decision is in favor of ` = 0 if and only
if P [Y = s] ≥ P [Y = s− 1]. Since Y is a sum of independent Bernoulli variables, we may
apply Lemma 9 and conclude that Y has a unimodal distribution. It follows that the Bayes
decision is the following threshold function: be in favor of ` = 0 iff Y ′ ≤ mode(Y ). The
punchline of this discussion is as follows: the Bayes decision is independent of the true label
` unless Y hits its mode (so that Y ′ = Y + ` is either mode(Y ) or mode(Y ) + 1). It follows
that the Bayes error is at least (1− P [Y = mode(Y )])/2. Because of Condition (B) and the
fact that k ≥ k(2β), we may apply Corollary 8 and obtain P [Y = mode(Y )] ≤ 2β so that
the Bayes error is at least 1/2− β.
We finally enter Stage 4 of the proof and show that conditions (A) and (B) hold with a
probability of at least 1− α provided that n = nk is large enough. Let b range over all bit
patterns from {0, 1}m+1. Consider the events

Ar(b): b ∈ {0, 1}m+1 coincides with the r-th column of M .
Bk,n(b): b ∈ {0, 1}m+1 coincides with at least k columns of M(n).

It is easy to see that
∑∞
r=1 P (Ar(b)) = ∞. Applying the Borel-Cantelli Lemma to the

events (Ar(b))r≥1 and Corollary 5 to the events (B4k2,n(b))k,n≥1, we arrive at the following
conclusion. There exists nk(b) ∈ N such that, for all n ≥ nk(b), the probability of B4k2,n(b)
is at least 1− 1/(2m+3k). We set n = nk = maxb nk(b). Then, the probability of B4k2,n =⋂
b∈{0,1}m+1 B4k2,n(b) is at least 1− 1/(4k). In other words: with a probability of at least

1−1/(4k), each b ∈ {0, 1}m+1 coincides with at least 4k2 columns ofM(n). Thus condition (A)
is violated with a probability of at most 1/(4k).
We move on to condition (B). With p =

∑
i∈I pi, we can decompose P [B4k2,n] as follows:

P [B4k2,n] = P
[
B4k2,n |p < 2k

]
· P [p < 2k] + P

[
B4k2,n |p ≥ 2k

]
· P [p ≥ 2k]

Note that, according to the definitions of B4k2,n(b) and B4k2,n, event B4k2,n implies that
Y ≥ 4k2 because there must be at least 4k2 occurrences of 1 in row m + 1 and in the
marked columns of M(n). On the other hand, E[Y ] = p. According to Markov’s inequality,
P
[
Y ≥ 4k2|p < 2k

]
≤ (2k)/(4k2) = 1/(2k). Thus, P [B4k2,n] ≤ 1/(2k) + P [p ≥ 2k]. Recall

that, according to condition (A), 1− 1/(4k) ≤ P [B4k2,n]. Thus, P [p ≥ 2k] ≥ 1− 1/(4k)−
1/(2k) = 1− 3/(4k). Since k ≥ 1/α, we conclude that the probability to violate one of the
conditions (A) and (B) is bounded by 1/k ≤ α. J
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We are now ready to complete the proofs of our main results. Theorem 2 is a direct
consequence of the second statement in Lemma 15 and of Lemma 16. The first part of
Theorem 3 is a direct consequence of the third statement in Lemma 15. As for the second
part, an inspection of the proof of Lemma 16 reveals that the adversary argument uses a
“finite part” Cn of C∗ only (with n chosen sufficiently large).

4 Final Remarks:

As we have seen in this paper, it is impossible to show in full generality that unlabeled
samples have a marginal effect only in the absence of any compatibility assumptions. It would
be interesting to explore which concept classes are similar in this respect to the artificial
classes C∗ and (Cn)n≥1 that were discussed in this paper. We would also like to know if the
bounds of Theorem 1 are tight (either for special classes or for the general case). It would be
furthermore interesting to extend our results to the agnostic setting.
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