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Abstract
This paper studies exact learning of unions of non-discretized geometric concepts in the model of
preference-based teaching. In particular, it focuses on upper and lower bounds of the corresponding
sample complexity parameter, the preference-based teaching dimension (PBTD), when learning
disjoint unions of a bounded number of geometric concepts of various types – for instance balls,
axis-aligned cubes, or axis-aligned boxes – in arbitrary dimensions. It is shown that the PBTD of
disjoint unions of some such types of concepts grows linearly with the number of concepts in the
union, independent of the dimensionality. Teaching the union of potentially overlapping objects
turns out to be more involved and is hence considered here only for unions of up to two objects.
Keywords: preference-based teaching dimension, geometric concept classes, learning unions of
concepts

1. Introduction

When designing machine learning algorithms, a natural task is to combine approaches for learning
certain types of concepts into methods for learning unions of such concepts. Likewise, when ana-
lyzing machine learning models, a typical objective is to compare the complexity of learning certain
types of concepts to the complexity of learning their unions. Already in the early days of research
on computational learning theory, learning unions of learnable concepts was a topic of interest, as
witnessed for example by publications on PAC-learning (Blumer et al., 1989; Long and Warmuth,
1994), on online learning (Maass and Turán, 1994), on learning from equivalence and membership
queries (Goldberg et al., 1994), on learning in the limit (Wright, 1989), and on learning from teach-
ers (Frazier et al., 1994). Not only various learning models, but also concept classes of numerous
kinds were studied in this context, for instance geometric concept classes (Maass and Turán, 1994;
Blumer et al., 1989), or, more recently, classes of formal languages (Ng and Shinohara, 2005), spe-
cific classes of recursively enumerable sets (Jain et al., 2007), and classes of recursive sets (Ouchi
et al., 2017). Taking the union is a simple and natural way of forming a composite concept from ba-
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sic ones, and yet learning unions typically requires more than just a straightforward generalization
of a basic learning algorithm.

This paper studies the complexity of exactly teaching unions of geometric concepts. In the
past, research on exact learning of geometric concepts typically dealt with finite classes of geo-
metric concepts, by discretizing the input space. In particular, most existing models of algorithmic
teaching are not suited to classes of non-discretized geometric objects. For example, the unique
(exact) identification of a rectangle among the set of all axis-aligned rectangles over the rational
numbers is not possible with a finite number of examples, either in the classical teaching dimension
model (Goldman and Kearns, 1995; Shinohara and Miyano, 1991) or in the subsequently intro-
duced model of recursive teaching (Zilles et al., 2011). By contrast though, the very recent model of
preference-based teaching makes natural classes of non-discretized geometric concepts learnable.
In preference-based teaching, the teacher and learner agree on a preference relation over the con-
cepts in the class. After the teacher presents a set T of labeled examples to the learner, the latter
selects the most preferred hypothesis that is consistent with T (Gao et al., 2017). For instance, to
teach axis-aligned rectangles in R2 or in Q2, the teacher and learner agree to prefer concepts of
smaller area over those of larger area. It is now sufficient for the teacher to present two positively
labeled points that are diagonally opposite in the target rectangle, as the learner will then correctly
hypothesize the unique smallest axis-aligned rectangle containing these two points.

The worst-case number of examples a teacher needs to present to the learner when teaching
any concept in a concept class L is called the preference-based teaching dimension (PBTD) of L.
The PBTD of the class of all axis-aligned rectangles in R2, for example, is 2. The focus of this
paper is on the following question: assuming the PBTD of L is finite, can we determine interesting
upper and lower bounds on the PBTD of the class of unions of up to k concepts from L, for a given
finite number k? We address this question for cases when L is a class of geometric objects over the
Euclidean domain, including, for instance, balls in Rd, axis-aligned cubes in Rd, or axis-aligned
boxes inRd.

The problem of determining upper bounds on the PBTD of the class of unions of objects taken
from a base class turns out to be non-trivial even when we focus on unions of mutually disjoint
objects: given positive and negative examples for a union of up to k objects, the learner must find
the right clustering of the examples (one cluster for each of the ` ≤ k objects). For general (possibly
non-disjoint) unions, this problem becomes quite involved even when the union of only two objects
is considered. We present some general results on the PBTD of disjoint unions of objects, as well
as some preliminary results on the non-disjoint case. In particular, it is shown that the PBTD of
disjoint unions of objects grows linearly with the number of objects in the union, independent of the
dimensionality, if each object is a uniformly scaled and translated version of a fixed convex body.

As is not uncommon in the field of computational learning theory, we also address the question
of learning in situations in which negative examples are not available. Here we obtain that teaching
with k+ 1 positive examples is optimal for the admittedly very constrained case in which exactly k
translated, mutually disjoint, and equally scaled copies of the same convex body must be learned.

The fact that preference-based teaching puts no restrictions on the preference relation over con-
cepts often makes reasoning about lower bounds complicated (Gao et al., 2017). For the same
reason, the freedom of choosing arbitrary preference relations makes the PBTD-model very pow-
erful. Using a cardinality argument, we establish a new general upper bound on the PBTD which
yields the surprising result that the PBTD of any family of plane algebraic curves of bounded degree
(including lines and conics) is one.
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2. Preliminaries

A concept class L is a family of subsets over a domain X , i.e., L ⊆ 2X where 2X denotes the
powerset of X . We write L′ ⊆f L, if L′ is a finite subclass of L. The elements of L are called
concepts. A labeled example is an element of X × {0, 1}. Elements of X are called examples. For
any set of labeled examples S ⊆ X × {0, 1}, we use the notation SX to refer to the set of examples
occurring in S, i.e., SX = {x ∈ X | (x, `) ∈ S for some ` ∈ {0, 1}}. A set L ⊆ X is consistent
with S if it includes all examples in S that are labeled “1” and excludes all examples in S that are
labeled “0”. A set S of labeled examples such that L but not L′ is consistent with S is said to
distinguish L from L′. The classical model of teaching is then defined as follows.

Definition 1 (Shinohara and Miyano (1991); Goldman and Kearns (1995)) A teaching set for
a concept L ∈ L w.r.t. L is a set S of labeled examples such that L is the only concept in L
that is consistent with S, i.e., S distinguishes L from any other concept in L. Define TD(L,L) =
inf{|S| : S is a teaching set for L w.r.t. L}. i.e., TD(L,L) is the smallest possible size of a teaching
set for L w.r.t. L. If L has no finite teaching set w.r.t. L, then TD(L,L) = ∞. The number
TD(L) = supL∈LTD(L,L) ∈ N0 ∪ {∞} is called the teaching dimension of L.

For technical reasons, we will occasionally deal with the number TDmin(L) = infL∈LTD(L,
L), i.e., the number of examples needed to teach the concept from L that is easiest to teach. Let L1
and L2 be two concept classes whose domains are disjoint. The direct sum of L1 and L2 is defined
as follows:

L1 ⊕ L2 = {L1 ∪ L2| L1 ∈ L1 ∧ L2 ∈ L2} .

It is well known (Doliwa et al., 2014) that TDmin acts additively on direct sums, i.e.,

TDmin(L1 ⊕ L2) = TDmin(L1) + TDmin(L2) . (1)

In this paper, by “disjoint union” we mean “a union of mutually disjoint objects that are taken from
the same domain”. This is quite different from “direct sum” where the objects participating in the
union are taken from mutually disjoint domains. In the latter case, the student can form k clusters
from the given labeled examples in a trivial manner so that we may invoke teaching protocols for
the k individual classes participating in the direct sum. In the former case (with disjoint objects
taken from the same domain), the right clustering of the labeled examples has to be taught as well.

We will be concerned with the teaching model suggested by Gao et al. (2017) in which the
teacher and the student agree not only on a classification-rule system L but also on a preference
relation, denoted as ≺, imposed on L. We assume that ≺ is a strict partial order on L, i.e., ≺ is
asymmetric and transitive. The partial order that makes every pair L 6= L′ ∈ L incomparable is
denoted by ≺∅. For every L ∈ L, let

L≺L = {L′ ∈ L : L′ ≺ L}

be the set of concepts over which L is strictly preferred. Note that L≺∅L = ∅ for every L ∈ L. In
the sequel, we briefly repeat the basic definitions for this model of teaching.

As already noted above, a teaching set S of L w.r.t. L distinguishes L from any other concept
in L. If a preference relation comes into play, then it is no longer necessary for S to distinguish L
from the concepts in L≺L because L is strictly preferred over them anyway.
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Definition 2 A teaching set for L ∈ L w.r.t. (L,≺) is defined as a teaching set for L w.r.t. L\L≺L.
Furthermore define

PBTD(L,L,≺) = inf{|S| : S is a teaching set for L w.r.t. (L,≺)} ∈ N0 ∪ {∞} .

The number PBTD(L,≺) = supL∈L PBTD(L,L,≺) ∈ N0 ∪ {∞} is called the teaching dimen-
sion of (L,≺).

Definition 2 implies that
PBTD(L,L,≺) = TD(L,L \ L≺L) . (2)

The classical model of teaching is obtained from the model described in Definition 2 when we plug
in the empty preference relation ≺∅ for ≺.

We are interested in finding the partial order that is optimal for the purpose of teaching and we
aim at determining the corresponding teaching dimension. This motivates the following notion:

Definition 3 The preference-based teaching dimension of L is given by

PBTD(L) = inf{PBTD(L,≺) : ≺ is a strict partial order on L} . (3)

We briefly note that i) PBTD(L) is left unchanged when the infimum in (3) ranges over all strict
linear orders (Gao et al., 2017), and ii) PBTD is sub-additive on direct sums of concept classes.
The question of whether PBTD is additive on direct sums is open.

TD+(L) and PBTD+(L), called the positive teaching dimension of L and positive preference-
based teaching dimension ofL, are defined analogously for the setting where only positive examples
can be employed by the teacher.

Classes over the Euclidean Domain. For X = R
d, we introduce the following classes of basic

geometric objects:

• BOXESd denotes the class of all d-dimensional boxes, i.e., the class of all d-dimensional
axis-aligned hyper-rectangles.

• CUBESd denotes the class of all d-dimensional axis-aligned cubes.

• BALLSd denotes the class of all d-dimensional balls.

We are primarily interested in determining the PBTD of various classes containing unions of these
basic objects.

Let a = (a1, a2, . . . , ad) and b = (b1, b2, . . . , bd) be points in Rd. We say that a is northern of
b (and that b is southern of a) if ad > bd. Let C denote a convex body in Rd (i.e., a compact and
convex subset ofRd with a non-empty interior). A point (necessarily unique) inC that is northern of
all other points in C is called the north pole of C. The notion south pole is understood analogously.
Note that some convex bodies, for example elements of BOXESd, do not have poles, but others, for
example elements of BALLSd do.
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Figure 1: A finite subclass of CUBES2 whose TDmin is at least 2; the class contains four small
cubes, denoted C1, . . . , C4, and the larger cube C that equals their union.

3. A Simple General Lower Bound Technique

To lower-bound PBTD, it is often convenient to use the following simple observation from (Gao
et al., 2017):

PBTD(L) ≥ sup
L′⊆fL

TDmin(L′) = sup
L′⊆fL

PBTD(L′) . (4)

This bound can be deployed to show that preference-based teaching of boxes or cubes in d
dimensions is not possible using just a single example:

Example 1 For all d ≥ 1, we have

PBTD(BOXESd) = PBTD+(BOXESd) = PBTD(CUBESd) = PBTD+(CUBESd) = 2 .

Proof PBTD+(BOXESd) = 2 was already shown by Gao et al. (2017). It now suffices to show
that supL⊆fCUBESd TDmin(L) > 1. Suppose first that d ≥ 2. Consider a finite class L consisting

of 2d + 1 cubes, one of which has side length 2 and forms the union of the remaining 2d cubes, the
latter having a side length of 1 each. See Figure 1 for an illustration in R2. It is easy to see that
TDmin(L) > 1: each point outside some cube in L is also outside another cube in L, and each point
inside some cube in L is also inside some other cube in L. Hence, no singleton can be a teaching
set for any concept in L. For d = 1, boxes and cubes are intervals, and a similar argument as above
works for the following finite subclass: {[0, 0], [1, 1], [2, 2], [0, 1], [1, 2], [0, 2]}.

The class of d-dimensional balls witnesses that the bound in Equation (4) is not tight:

Example 2 For every d ≥ 2, we have PBTD(BALLSd) = PBTD+(BALLSd) = 2 while

sup
L⊆fBALLSd

PBTD(L) = sup
L⊆fBALLSd

PBTD+(L) = 1 .

Proof Let L be a finite subclass of BALLSd. Let us prefer ball B1 over ball B2 if the north pole
of B1 is northern of the north pole of B2. Among balls with the same north pole, let us prefer the
smaller one. It is easy to see that, given this preference relation, we can teach each ball of a strictly
positive radius by a single positive example that is sufficiently close, albeit not identical, to its north
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pole. Each ball of radius 0 forms a singleton set, say {z}, and is taught by the example (z,+). Thus
supL⊆fBALLSd PBTD+(L) = 1.

It was shown by Gao et al. (2017) that a class containing all singletons can only then have
a PBTD of 1, if it contains at most one additional concept on top of the singletons. Hence
PBTD(BALLSd) ≥ 2. Finally, PBTD(BALLSd) = PBTD+(BALLSd) = 2 is witnessed
by a teaching strategy that assigns two diametrically opposed positive examples to any ball; the
learner need only prefer smaller balls over larger ones in order to successfully identify any target in
BALLSd.

So, for the class of boxes and the class of cubes, the preference-based teaching dimension coin-
cides with the supremum of the PBTD taken over all finite subclasses, while this is not true for the
class of balls.

4. Upper Bounds Based on Cardinality Arguments

As we have seen in Section 3, the condition PBTD(L) ≤ supL′⊆fL PBTD(L′) is not satisfied in
general. The condition becomes weaker when we replace PBTD by TD. The weaker condition
actually is satisfied by PBTD on all countably infinite families:

Theorem 4 If L is countably infinite, then PBTD(L) ≤ supL′⊆fLTD(L′) and PBTD+(L) ≤
supL′⊆fLTD+(L′).

Proof Let L1, L2, . . . be any one-one enumeration of the family L. Define the following preference
relation:

∀i, j ∈ N : (Li ≺ Lj)⇔ j < i ,

i.e., we prefer sets with a smaller index. So to teach Li, we only need to distinguish Li from all sets
Lj such that j < i. The size of such a teaching set for Li is upper-bounded by TD({L1, . . . , Li}) ≤
sup{TD(L′) : L′ is a finite subfamily of L}.

This result is perhaps more powerful than it appears at first glance, since many concept classes
will become countable if one restricts the underlying domain to be the set of computable reals.
Moreover, it can be generalized in the following way.

Theorem 5 For every infinite family of sets L the following holds:

PBTD(L) ≤ sup{TD(L′) : L′ ⊂ L ∧ card(L′) < card(L)} ,
PBTD+(L) ≤ sup{TD+(L′) : L′ ⊂ L ∧ card(L′) < card(L)} .

Proof The initial segment of L ∈ L w.r.t. a given linear order on L is defined as the family of all
sets in L which are strict predecessors of L. This subfamily of L is denoted as IL.
Recall from set theory that a linear ordering on a setM is said to be a well-ordering if any non-empty
subset of M has a smallest element. The following result (based on the Well-Ordering Principle) is
well known (Moschovakis, 1994): every set L can be well-ordered such that, for every L ∈ L, the
cardinality of the initial segment IL is smaller than the cardinality of L.
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Now, fix a well-ordering on L with this property. Choose the preference relation on L such that, for
every L ∈ L, precisely the sets in IL are strictly preferred over L. It follows that

PBTD(L) ≤ sup
L∈L

TD(L, IL ∪ {L}) ≤ sup
L∈L

TD(IL ∪ {L})

≤ sup{TD(L′) : L′ ⊂ L ∧ card(L′) < card(L)} ,

as desired.

As usual, ℵ0 denotes the cardinality of a countably infinite set so that 2ℵ0 denotes the cardinality
of the reals. For simplicity, we set |S| = card(S) in the sequel. Cardinal multiplication is denoted
as ν⊗µ, i.e., if µ = |S| and ν = |T |, then ν⊗µ = |S×T |. With this notation, the following holds:

Theorem 6 Let L be a class of cardinality λ = |L| > ℵ0. Suppose that every element L ∈ L
satisfies |L| ≥ λ. Furthermore suppose that

ν := sup{|L ∩ L′| : L 6= L′ ∈ L} < λ .

Then PBTD+(L) = 1.

Proof We first note that ν, as a supremum of cardinalities, is a cardinality itself (Schimmerling,
2011). According to Theorem 5, it suffices to show that, for every L′ ⊂ L with ν ′ := |L′| < λ, we
have that TD+(L′) ≤ 1. Let µ = max{ν, ν ′,ℵ0}. Fix some L ∈ L′. Let S = ∪L′∈L′(L ∩ L′), i.e.,
S is the set of points in L that L shares with some other set in L′. It clearly suffices to show that S
is a proper subset of L. From the rules of cardinal arithmetic (Schimmerling, 2011), we conclude
that

|S| ≤ ν ⊗ ν ′ ≤ µ⊗ µ = µ < λ ≤ |L| .

Thus S must be a proper subset of L, indeed.

Example 3 By Bezout’s Theorem, any pair of plane algebraic curves intersect in a number of
points bounded by the product of their degrees. Thus, any family of such curves, each with uncount-
ably many points, satisfies the assumptions made in Theorem 6 and can therefore be taught in the
PBTD-model at the expense of a single positive example.

5. Upper Bounds on the PBTD of Disjoint Unions of Basic Objects

In this subsection, we let C denote a convex body in Rd (i.e., a compact and convex subset of Rd

with a non-empty interior). Consider now the class

LC = {s · C + u : s ∈ R+
0 ∧ u ∈ R

d} .

It consists of all (non-negatively) scaled and translated versions of C. If C ′ = s ·C + u for s ∈ R+
0

and u ∈ Rd, then s is called the scaling factor ofC ′. Since the scaling factor 0 is among the possible
choices, the class LC contains the singletons inRd as a subclass.

We denote by LCk the class of unions of k or fewer objects from LC . The subclass consisting
of unions of k or fewer mutually disjoint objects from LC is denoted as LCk [disj]. For instance, if
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B denotes the unit ball in Rd, then LBk denotes the class of unions of k or fewer balls in Rd, and
LBk [disj] denotes the corresponding class for disjoint unions. Later, we will often use the subscript
“= k” instead of the subscript k when referring to concepts that can be written as the union of k,
but no fewer than k, objects, e.g., LC=k = LCk \ LCk−1 and LC=k[disj] = LCk [disj] \ LCk−1[disj].

In the sequel, we set BALLSd
k := LBk . Similarly CUBESd

k denotes the class of unions of k or
fewer d-dimensional axis-aligned cubes, and BOXESd

k denotes the class of unions of k or fewer
d-dimensional boxes. Note, however, that BOXESd

k cannot be obtained from a single convex body
by scaling and translation unless we employ different scaling factors along different dimensions.

Recall that the union of k mutually disjoint objects taken from the same domain is not be con-
fused with the union of objects taken from mutually disjoint domains (as is done in the definition of
the direct sum of concept classes).

As usual, the diameter of a set M ⊆ Rd is given by

�(M) = sup
x,y∈M

‖x− y‖ .

For obvious reasons, the PBTD of LCk and LCk [disj] will not change when we replace all concepts L
of the class by {Ax : x ∈ L} where A is a fixed orthogonal matrix. Under such a transformation,
we may assume that the diameter of C is realized by a pair of poles that differ only in their d-th
coordinate. Furthermore, for the purposes of defining LC , we may, without loss of generality, make
the following technical assumption:

(A) C has north pole (0, . . . , 0, 0), south pole (0, . . . , 0,−1), and �(C) = 1.

Note that if C satisfies assumption (A) then any object s ·C + u ∈ LC , has north pole u, south pole
u − (0, . . . , 0, s), and diameter s. It follows that, if C ′ = s′ · C + u′ and C ′′ = s′′ · C + u′′ (with
s′ ≤ s′′) have the same north pole, then C ′ ⊆ C ′′.

We will now state the main result of this section.

Theorem 7 Let C be a convex body inRd. Then PBTD(LCk [disj]) ≤ 3k.

Proof As noted above, we may assume that C satisfies the technical assumption (A). Let K =
(C1, . . . , Cn) be a collection of n ≤ k disjoint objects from LC . We identify the collection K with
the concept U(K) = ∪nl=1C

l ∈ LCk [disj]. For l = 1, . . . , n, let xl denote the north pole of C l.
Similarly yl denotes the south pole of C l.

For distinct points p, q ∈ Rd, we write p � q iff there exists t ≤ d such that (i) ps = qs, for
t < s ≤ d, and (ii) pt > qt. After renumbering, if necessary, we may assume that xi � xj , for all
i < j. The sequence P (K) = (x1, . . . , xn) is called the profile of K. Consider two collections
K and K ′ with profiles P (K) = (x1, . . . , xn) and P (K ′) = (u1, . . . , um). We say that profile
P (K) is dominated by profile P (K ′) if either (i) P (K ′) is an extension of P (K), or (ii) for the first
position j such that uj 6= xj , we have that uj � xj . Note that if P (K) 6= P (K ′) then either P (K)
is dominated by P (K ′) or P (K ′) is dominated by P (K).

We define a preference relation on collections of disjoint objects from LC by the following
rules:

Rule 1: If P (K) 6= P (K ′) then K is preferred over K ′ if P (K) is dominated by P (K ′).
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Rule 2: If P (K) = P (K ′) then K is preferred over K ′ if, for every l ∈ [n], the scaling factor of
Dl is at least as large as the scaling factor of C l and, for at least one l ∈ [n], the scaling factor
of Dl is strictly larger than the scaling factor of C l; equivalently U(K) ⊂ U(K ′).

Suppose now the collection K = (C1, . . . , Cn) with profile P (K) = (x1, . . . , xn) is to be
taught. The teaching set for K includes the following points:

• the north poles x1, . . . , xn and the south poles y1, . . . , yn,

• for every l ∈ [n] a point zl that satisfies the following conditions:

– On the first d− 1 coordinates, zl coincides with yl.

– The coordinate zld is smaller than yld, but only slightly smaller so that the object from
LC with north pole xl and south pole zl (which properly includes the object C l) does
not intersect any of the objects Cj with j ∈ [n] \ {l}. (By the disjointness of the objects
in K, such a point zl must exist.)

Obviously the points xl and yl are labeled “1” whereas the points zl are labeled “0”.
Suppose that K ′ = (D1, . . . , Dm) with profile P (K ′) = (u1, . . . , um) is a different collection

that is consistent with the above examples. It will suffice to show that K is preferred over K ′,
according to the rules above.

If P (K ′) = P (K), then because of the negative examples z1, . . . , zn, the south pole yl can be
covered only by Dl, the object in K ′ with north pole xl. It follows that the scaling factor of Dl is at
least as large as the scaling factor of Ci and, because K ′ 6= K, for at least one l ∈ [n], the scaling
factor of Dl is strictly larger than the scaling factor of Ci. Hence, by Rule 2, K is preferred over
K ′.

On the other hand, if P (K ′) 6= P (K) we can assume that the longest common prefix of P (K)
and P (K ′) has length j − 1 < n. (Otherwise, P (K ′) dominates P (K) and so K is preferred over
K ′, by Rule 1.) We make the following observations:

• The objects D1, . . . , Dj−1 have the same north poles as C1, . . . , Cj−1, respectively.

• The negative examples z1, . . . , zj−1 ensure that none of the objects D1, . . . , Dj−1 can cover
xj .

• One of the objects Dt ∈ {Dj , . . . , Dm} covers xj , so either (i) its north pole ut coincides
with xj or (ii) utd, the d-th coordinate of its north pole, must be greater than xjd.

• Consequently either (i) uj � ut or (ii) ujd ≥ utd > xjd. In either case, uj � xj so that P (K ′)
dominates P (K). Thus, by Rule 1, K is preferred over K ′.

Remark 8 It should be noted that, in the proof above, we only used the fact that there exists a point
pS ∈ C \ {pN} such that the segment [pN , pS ] is a maximal segment in C. Thus Theorem 7 still
holds, for example, if C is star-shaped in any sufficiently small neighborhood of pN , and the objects
in K are pairwise linearly separable.
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We remind the reader of the following standard definitions. A set C ∈ Rd is said to be strictly
convex if, for every choice of distinct points x, y ∈ C, the following holds: any point on the line
segment connecting x and y, other than the endpoints x and y themselves, belongs to the interior of
C. A strictly convex body inRd is a convex body inRd that is strictly convex. Note that objects like
balls or, more generally, ellipsoids are strictly convex bodies whereas convex polytopes are convex
bodies but are not strictly convex.

Suppose that C ⊂ Rd is a strictly convex body. We say that a collection K of objects from
LC is locally disjoint (around the north poles) if no object in K contains a north pole of any other
object in K. In other words: the north pole of every object in K can be assigned a neighborhood
such that the collection of these neighborhoods is disjoint. Let LCk [loc-disj] be the class consisting
of unions of k or fewer locally disjoint objects from LC . The following result is a close relative of
Theorem 7:

Theorem 9 Let C be a strictly convex body. Then PBTD(LCk [loc-disj]) ≤ 3k.

The proof, which is quite similar to the proof of Theorem 7, will be given in Appendix A.

The upper bounds from Theorems 7 and 9 can be improved when one imposes the restriction
that all objects participating in a union are of the same (unknown) size, i.e., they have the same
scaling factor. This matches the intuition that any teaching strategy might save some examples
when the size of only one of the objects in the union is to be taught.

More formally, let us consider the class LCk [transl] of unions of k or fewer objects from LC all
of which are just translations of one another, i.e., for any two objects C1, C2 ∈ LC participating in
such a union, there is a unique vector u ∈ Rd such that C2 = C1 + u.1 The notations LC=k[transl],
LCk [disj, transl] and LC=k[disj, transl] are understood analogously.

Theorem 10 Let C be a compact body inRd. Then PBTD+(LC=k[disj, transl]) ≤ k + 1.

The proof of this theorem will be given in Appendix B.

Since Theorem 7 does not apply to the class of boxes (recall that BOXESd
k cannot be obtained

from a single convex body by scaling and translation unless we employ different scaling factors
along different dimensions), an upper bound for BOXESd

k has to be found by a separate analysis:

Theorem 11 PBTD(BOXESd
k[disj]) ≤ k(d+ 2)− d.

The proof is given in Appendix C.

6. Lower Bounds on the PBTD of Disjoint Unions of Basic Objects

We argued in Theorem 7 that 3k examples suffice to teach any disjoint union of up to k scaled
and translated versions of a convex body. This subsection will address lower bounds for the same
teaching problem and variants thereof. Its main result establishes that

PBTD(LCk [disj]) = Θ(k) ,

for any convex body C. To this end, we first make the following rather trivial observation.

1. Uniqueness easily follows from the compactness of C1 and C2.

10
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Lemma 12

1. Let X be a domain with at least k elements. Suppose that Lk is the family of all subsets of X
with at most k elements. Then TDmin(Lk) = k.

2. Let X be a domain with at least 2k elements. Suppose that L=k is the family of all subsets of
X with exactly k elements. Then TDmin(L=k) = k.

Since the PBTD of a class is lower bounded by the TDmin of each of its finite subclasses, we
obtain the following result:

Corollary 13 Let X be a domain with at least k (resp. at least 2k) elements. For any concept class
L over X that contains the subclass Lk (resp. L=k), we have that PBTD(L) ≥ k.

Proof Fix a subset X ′ of X such that |X ′| = k (resp. |X ′| = 2k). Let L′ be the subclass of L that
consists of all subsets of X ′ with at most k (resp. with exactly k) elements. L′ is a finite subclass of
L to which Lemma 12 can be applied.

Corollary 14 Let C be a convex body inRd. Then PBTD(LC=k[disj, transl]) ≥ k.

Proof Since LC contains all singletons over Rd, the class LC=k[disj, transl] contains all subsets of
R

d with at exactly k elements. Now Corollary 13 applies.

If L is any concept class and L ∈ L any concept, a set S ⊆ L is called a weak spanning set
for L w.r.t. L, if there is no proper subset L′ ⊂ L in L that contains S. It was shown by Gao et al.
(2017) that

PBTD+(L) ≥ sup
L∈L

inf{|S| : S is a weak spanning set for L w.r.t. L} . (5)

We refer to the right hand-side of (5) as the weak spanning dimension of L. Hence inequality (5)
establishes the weak spanning dimension as lower bound on PBTD+.

Lemma 15 Let C be a convex body inRd. Then the weak spanning dimension of the class
LC=k[disj, transl] equals k + 1.

Proof Consider a concept L in LC=k[disj, transl] that consists of k disjoint duplicates of C. Since
the interior of a convex body is non-empty, C is neither empty nor a singleton. Any choice of k
points x1, . . . , xk can be consistently explained by the hypothesis ∪kl=1{xl} ∈ LC=k[disj, transl],
which is a proper subset of L. Thus the weak spanning dimension of LC=k[disj, transl] is at least
k+ 1. On the other hand, the weak spanning dimension of LC=k[disj, transl] is at most k+ 1 because
it is upper-bounded by PBTD+(LC=k[disj, transl]) and the latter does not exceed k+ 1 according to
Theorem 10.

Corollary 16 Let C be a convex body inRd. Then PBTD+(LC=k[disj, transl]) = k + 1.

11
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The lower bounds that have been shown in this section to hold for the class LC=k[disj, transl]
apply also to classes containing LC=k[disj, transl] as a subclass (like, for instance, LCk [disj] and
LC=k[disj]). Together with the upper bound of Theorem 7, this implies

k ≤ PBTD(LC=k[disj]) ≤ PBTD(LCk [disj]) ≤ 3k (6)

for any convex body C in Rd. The following simple result occasionally helps to narrow the gap
between k and 3k:

Lemma 17 Let C be a convex body inRd. Then, for every L′ ⊆f LC , the following holds:

1. PBTD(LC=k) ≥ k · TDmin(L′).

2. Suppose that none of the sets in L′ can be taught by a single negative example. Suppose
furthermore that U := ∪L′∈L′L

′ ∈ LC so that L′′ := L′ ∪{U} ⊆f LC . Then TDmin(L′′) ≥
2 and PBTD(LC=k) ≥ 2k.

Proof

1. Suppose that all concepts from L′ fit within the strip S = {x ∈ Rd : a ≤ x1 ≤ b}.
Let S1, S2, . . . , Sk be disjoint copies of S, under translation by v1, v2, . . . , vk, respectively.
Consider the finite subclass L′k of PBTD(LC=k) which contains those unions of k objects
from L′ which have precisely one object from L′, translated by vi, in the interior of Si. Thus
L′k is a direct sum of k versions of L′ (one version per strip). An application of Equation (1)
yields PBTD(LC=k) ≥ TDmin(L′k) ≥ k · TDmin(L′).

2. By assumption, none of the concepts inL′ can be taught by a single negative example. Clearly
U cannot be taught by a single negative example either since any negative example for U is
also a negative example for any concept in L′. Moreover, none of the concepts in L′′ can be
taught by a single positive example because each example in U is positive for at least one of
the concepts in L′, and vice versa. Hence TDmin(L′′) ≥ 2. From the first assertion of the
lemma, it follows that PBTD(LC=k) ≥ 2k.

An inspection of Example 1 reveals that we may apply Lemma 17 to the class CUBESd
k so that

(in combination with Theorem 7) the following holds:

Corollary 18 For all d, k ≥ 1, we have

2k ≤ PBTD(CUBESd
=k) ≤ PBTD(CUBESd

k) ≤ 3k

and (because CUBES is a subclass of BOXES)

2k ≤ PBTD(BOXESd
=k) ≤ PBTD(BOXESd

k) .

12
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PBTD PBTD+

BALLSd
k[disj] k ≤ PBTD ≤ 3k k + 1 ≤ PBTD+

BALLSd
=k[disj] (Equation (6)) (Corollary 16)

BALLSd
k[loc-disj] k ≤ PBTD ≤ 3k k + 1 ≤ PBTD+

BALLSd
=k[loc-disj] (Equation (6) and Theorem 9) (Corollary 16)

BALLSd
=k[disj, transl] k ≤ PBTD ≤ k + 1 PBTD+ = k + 1

(Corollaries 14 and 16) (Corollary 16)
BALLSd

2 2 ≤ PBTD ≤ 4 PBTD+ = 4

BALLSd
=2 (Equation (6) and Theorem 20) (Theorem 20)

BALLSd
2[transl] 2 ≤ PBTD ≤ 3 PBTD+ = 3

BALLSd
=2[transl] (Corollaries 14 and 21) (Corollary 21)

CUBESd
k[disj] 2k ≤ PBTD ≤ 3k 2k ≤ PBTD+

CUBESd
=k[disj] (Corollary 18) (Corollary 18)

CUBESd
=k[disj, transl] k ≤ PBTD ≤ k + 1 PBTD+ = k + 1

(Corollaries 14 and 16) (Corollary 16)
CUBESd

2 PBTD = 4 PBTD+ = 4

CUBESd
=2 (Theorem 22) (Theorem 22)

CUBESd
2[transl] PBTD = 3 PBTD+ = 3

CUBESd
=2[transl] (Theorem 23) (Theorem 23)

BOXESd
k[disj] 2k ≤ PBTD ≤ (d+ 2)k − d 2k ≤ PBTD+

BOXESd
=k[disj] (Corollary 18 and Theorem 11) (Corollary 18)

Table 1: Summary of our results on teaching specific types of unions of geometric concepts.
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7. Summary

Table 1 summarizes our main results on teaching unions of balls, cubes, or boxes. All results
concerning (possibly non-disjoint) unions of two objects (balls, cubes) are given in the appendix.
They are mainly meant to illustrate the perfidies of the object when it comes to analyzing the PBTD
of unions of mutually overlapping objects.
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Appendix A. Proof of Theorem 9

The proof is quite similar to the proof of Theorem 7. The same preference relation is used. Suppose
that K = (C1, . . . , Cn) is a collection of objects that is to be taught. For every l ∈ [n], we
include the north pole xl into the teaching set K (as we did in the proof of Theorem 7). The crucial
difference to the proof of Theorem 7 is the following:

• Instead of the south pole yl of C l, we include a point ylnew that lies on the boundary of C l and
is sufficiently close to xl.

• Instead of a point zl that is located southern of and sufficiently close to yl, we choose a point
zlnew that is sufficiently close to ylnew and does not belong to C l.

The main observations are as follows. First, all examples that we have put in the teaching set are
located in a neighborhood of the corresponding north pole (and this neighborhood can be chosen as
small as we want). Second, these examples fit the same purpose as the original examples did in the
proof of Theorem 7. Specifically, the following can be achieved:

1. The negative examples zlnew make sure that every object with north pole xl that excludes zlnew
does still not intersect any of the objects Cj with j ∈ [n] \ {l}.

2. The positive examples ylnew make sure that every collection K ′ of objects with the same
profile as the target collection K uses objects of the “right size” so that K ′ = K.

Given the proof of Theorem 7, the missing details are easy to fill in.

Appendix B. Proof of Theorem 10

We begin with the following:
Observation Suppose that C is any subset of Rd, and let C1 = C + u1 and C2 = C + u2 be
arbitrary objects in LC . Let x be an arbitrary point in C. If C ′ = C+v ∈ LC contains both x+u1

and x+ u2, then x+ u1 − v and x+ u2 − v both belong to C, and hence x+ u1 + u2 − v belongs
to C1 ∩ C2.
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As in the proof of Theorem 7, we may assume that if K = (C1, . . . , Ck) a member of the class
LC=k[disj, transl] it has a profile (x1d, . . . , x

k
d), where, for every l ∈ [k], xl is the north pole of C l,

and, for every i < j, xi � xj . We define the following hierarchical preference relation:

Rule 1: Collections of objects with a smaller common scaling factor are preferred over collections
of larger objects.

Rule 2: Between two collections of objects of the same scaling factor, the collection with lexico-
graphically smaller profile is preferred.

Suppose now the disjoint collection K = (C1, . . . , Ck) with k objects of the same scaling
factor, say s, is to be taught. The teaching set for K consists of the north poles x1, . . . , xk and the
single south pole yk of Ck. Clearly, each of these k + 1 examples is labeled “1”.

According to the pigeon-hole principle, a consistent hypothesis from LC=k[disj, transl] must
cover two of the positive examples by a single object. Because of Rule 1, a smallest possible
hypothesis will be chosen for this purpose. The target collection K witnesses that a scaling factor
of s would be sufficient.

Since C satisfies condition (A), it follows that ‖xk − yk‖ = �(Ck) = s. Furthermore, since
xl � xk, ||xl − yk|| > s, for all l < k. Hence, no object from LC with scaling factor less than or
equal to s can cover xl and yk, unless the scaling factor is s and the object is Ck .

We may conclude from our preliminary Observation that it is impossible to cover two distinct
north poles by a single object from LC with scaling factor s (since, otherwise, there would be
l 6= l′ ∈ [k] such that C l ∩ C l′ 6= ∅).

In summary, the preference relation forces us to cover xk and yk by Ck, and all other positive
examples xl by their own object. Given the constraint that all k objects in the collection must have
scaling factor s, Rule 2 forces us to make x1, . . . , xk the north poles of the chosen collection. Thus,
given Rules 1 and 2, the k+1 chosen examples uniquely specifyK as the most preferred hypothesis
(among the consistent ones).

Appendix C. Proof of Theorem 11

In one dimension BOXES are just intervals. Any collection of k disjoint intervals can be taught
by providing (i) positive examples at all interval endpoints, and (ii) one negative example between
adjacent intervals, for a total of at most 3k − 1 examples. The student simply prefers a hypothesis
that minimizes the total length of the intervals.

This strategy generalizes in a straightforward way to higher dimensions. LetK = (C1, . . . , Cn)
be any instance of BOXESd

k[disj] that is to be taught, and let δ denote the minimum distance (in any
dimension) between distinct boxes in K. We consider two natural orders on points based on their
coordinate vectors: first the usual lexicographic total order and second the domination partial order
in which one vector dominates another if it is at least as large in every coordinate position. We say
that point p is larger than point q if the coordinate vector of p is lexicographically larger than that
of q.

For l = 1, . . . , n, let pl (resp. ql) denote the maximal (resp. minimal) corner of C l. After
renumbering, if necessary, we may assume that the sequence (p1, p2 . . . pn) is in decreasing order
by size. The sequence P (K) = (p1, . . . , pn) is called the profile of K. One such profile is said to
be larger than a second if either (i) in the first position they differ the first has a larger point than the
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second, or (ii) the first is an extension of the second. We identify the collection K with its coverage
U(K) = ∪nl=1C

l.
Suppose that K = (C1, . . . , Cn) be an instance of BOXESd

k[disj] that is to be taught. The
teaching set for K includes the following points associated with each object C l ∈ K:

• the corner points pl and ql, and

• For l = 1, . . . , n and for each dimension i ∈ {1, . . . d} a point rli at distance δ/2 below the
other box corner whose coordinate vector differs from that of pl in the i-th coordinate only
(or δ/2 below pl itself, if box C l is degenerate in dimension i).

Obviously the points pl and ql are labeled “1” whereas the points rli are all labeled “0”.
We define the following hierarchical preference relation:

Rule 1: Collections with a smaller profile are preferred over collections with a larger profile.

Rule 2: Among collections K and K ′ with the same profile, we prefer K over K ′ if U(K) ⊂
U(K ′).

Suppose that a student chooses an hypothesis K ′ = (D1, . . . , Dm) with profile P (K ′). Note
that any point that belongs to P (K) must either belong to P (K ′) or be dominated by a point (namely
the maximal corner of its containing box) that belongs to P (K ′). The latter cannot itself belong to
the profile of K, since, by disjointness, no profile point belongs to the box associated with another
profile point. Hence, the hypothesis K ′ must have a profile P (K ′) that is no smaller than P (K)
(since either P (K ′) is an extension of P (K), or the largest (first) element pj in P (K) that does not
belong to P (K ′) is smaller than the largest (first) element in P (K ′) that does not belong to P (K)).

Thus, guided by preference Rule 1, the student must choose an hypothesis K ′ with P (K ′) =
P (K). But the placement of negative examples ensures that in any such hypothesis, the point ql can
only be contained in the box with maximum corner pl, for all l. Thus any hypothesis that satisfies
in addition preference Rule 2 must consist of minimum volume boxes that contain both pl and ql,
which is exactly the intended hypothesis K.

Note that the negative example in dimension i associated with any box C l whose corner ql is
minimal in dimension i is unnecessary, since extending C l in this dimension cannot possibly cover
any additional corner points. Thus, a total of k(d+ 2)− d examples suffice.

Appendix D. Teaching Unions of Two Balls

Let BALLSd
k[loc-disj] denote the subclass of BALLSd

k consisting of all unions of at most k balls
whose pairwise intersections do not contain the north pole of either ball. An application of Theo-
rem 9 yields the following bounds:

PBTD(BALLSd
k[disj]) ≤ PBTD(BALLSd

k[loc-disj]) ≤ 3k . (7)

When the balls in a union may overlap in arbitrary ways, the analysis of the teaching complexity
becomes more difficult. The remainder of this section is devoted to the special case of unions of at
most two balls, i.e., the case k = 2.

The following simple observation is illustrated in Fig. 2. Suppose thatB andB′ are two distinct
balls in Rd whose surfaces touch each other in one point. Then the two balls intersect just in this
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one point (Case 1), as depicted in part a) of the figure, or the ball with the smaller radius is strictly
contained in the ball of larger radius (Case 2), as depicted in part b) of the figure. For example, if
the north pole (resp. south pole) of B coincides with the north pole (resp. south pole) of B′, then
we are in Case 2.

a) b)

Figure 2: Two balls whose surfaces touch each other in one point.

Throughout this section, B(z, r) with z ∈ Rd and r ≥ 0 denotes the ball of radius r around z.

Lemma 19 Consider a hypothesis H from BALLSd
2, say H = B0 ∪B1 where Bb = B(zb, rb) for

b = 0, 1. Suppose that neither B0 ⊆ B1 nor B1 ⊆ B0 (which implies that z0 6= z1). Let L be the
line through z0 and z1. Assume w.l.o.g. that (after performing an appropriate rotation of Rd), z0 is
northern of z1 so that L is a vertical line. Let x0 be the north pole of B0 and let x1 be the south
pole of B1. With these assumptions, the following holds:

1. For any pair (x′0, x
′
1) ∈ B0 × B1 \ {(x0, x1)}, we have ‖x′1 − x′0‖ < ‖x1 − x0‖ (so that

‖x1 − x0‖ coincides with the diameter of H).

2. The point x0 is northern of the north pole of B1 and, symmetrically, the point x1 is southern
of the south pole of B0.

Proof A straightforward proof, illustrated in Fig. 3, goes as follows. Let z be the point that resides
in the middle of the line segment between x0 and x1. Obviously, z is located somewhere in between
z0 and z1. It follows that the ball of radius ‖z − x0‖ = ‖z − x1‖ around z touches x0 and x1
and (because of having a larger radius than the balls B0 and B1, respectively) has the remaining
points of B0 and B1 in its interior. Thus, any pair (x′0, x

′
1) ∈ B0 × B1 \ {(x0, x1)} must satisfy

‖x′1 − x′0‖ < ‖x1 − x0‖. Finally note that x0 not being northern of the north pole of B1 would
imply that B0 ⊆ B1 and, symmetrically, x1 not being southern of the south pole of B0 would imply
B1 ⊆ B0.

Given two balls B0 and B1 such that neither one is contained in the other, we say that the pair
(x0, x1) ∈ B0 × B1 represents the diameter of B0 ∪ B1 if ‖x1 − x0‖ coincides with the diameter
of B0 ∪ B1. It follows from Lemma 19 that such a pair is unique and, after an appropriate rotation
ofRd, we have precisely the situation described in the assumption and conclusions of Lemma 19.

Theorem 20 PBTD+(BALLSd
2) = PBTD+(BALLSd

=2) = 4.
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Figure 3: The diameter of B0 ∪B1 uniquely given as the line segment between x0 and x1.

Proof We first show that PBTD+(BALLSd
=2) ≥ 4. To this end, it suffices to show that a union of

two balls B0 = B(z0, r0) and B1 = B(z1, r1) such that 0 < r0 ≤ r1 and B0 6⊆ B1 has no weak
spanning set of size 3 or less. Consider any collection of three distinct points P1, P2, P3 ∈ B0∪B1.
At least two of them, say P1 and P2, must belong to the same ball Bb with b ∈ {0, 1}. But then
Bb ∪ {P3} = Bb ∪B(P3, 0) contains the three points too and is a proper subset B0 ∪B1. Thus we
need at least four points for weakly spanning every member of the class BALLSd

2.
We now show that PBTD+(BALLSd

2) ≤ 4. For this purpose, we employ the following hierarchical
preference relation ≺ on BALLSd

2:

1. With highest priority, pick a hypothesis with a smallest possible diameter.

2. With second highest priority, pick a hypothesis such that the maximum of the two radii is as
small as possible.

3. With third highest priority, pick a hypothesis such that the minimum of the two radii is as
small as possible.

Consider the union H of two balls B0 = B(z0, r0) and B1 = B(z1, r1). We have to design
a positive teaching set for B0 ∪ B1 w.r.t. (BALLSd

2,≺) of size at most 4. We proceed by case
analysis:

Case 1: H = B0 or H = B1. Say H = B1.
The following discussion is illustrated in part a) of Fig. 4. Let x0 be the north pole and let x1
be the south pole of B1. Let x2 be any point from the surface of B1 but different from x0 and
x1. We claim that T = {x0, x1, x2} is a positive teaching set forB1. Consider any hypothesis
H ′ ∈ BALLSd

2 that contains x0 and x1 and is not inferior to B1 w.r.t. ≺. It suffices to show
that either H ′ = B1 or H ′ does not contain x2. If H ′ consists of a single ball, say B′, then it
easily follows that B′ = B1. Let us therefore assume that B′ is of the form B′ = B′0 ∪ B′1
where, for b = 0, 1, B′b = B(z′b, r

′
b) and neither B′0 ⊆ B′1 nor B′1 ⊆ B′0. We first observe that

the diameter of H ′ coincides with ‖x1 − x0‖:
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• It is at least ‖x1 − x0‖ because x0, x1 ∈ H ′.
• It is at most ‖x1 − x0‖ because, otherwise, we would prefer B1 over H ′.

Now it follows that (x0, x1) represents the diameter of H ′. Since neither B′0 ⊆ B′1 nor
B′1 ⊆ B′0, it follows that max{r′0, r′1} < r1. But then the point x2 (located at the surface of
B1) cannot belong to H ′ = B′0 ∪B′1.

Case 2: Neither B0 ⊆ B1 nor B1 ⊆ B0.
The following discussion is illustrated in part b) of Fig. 4. After an appropriate rotation ofRd,
we have precisely the situation that is described in Lemma 19. We may assume that r0 ≤ r1.
(If not, then perform another rotation that makes everything upside-down.) We claim that the
following four points x0, x1, x2, x3 form a positive teaching set for H w.r.t. (BALLSd

2,≺):

• x0 is the north pole of B0 and x1 is the south pole of B1 (which is consistent with the
notation used in Lemma 19).

• x2 is a point on the surface ofB0 that is sufficiently close to x0 so that it does not belong
to B1.

• x3 is a point on the surface of B1 that is sufficiently close to x1 so that the distance
between x0 and x3 is larger than the diameter of B1.

Consider any hypothesis H ′ ∈ BALLSd
2 that contains x0 and x1 and is not inferior to H

w.r.t. ≺. H ′ cannot consist of a single ball B because B (containing x0 and x1) would have
a diameter of at least ‖x1 − x0‖ (which is the diameter of H) and B would have a radius
greater than max{r0, r1} so that H would be preferred over B. Thus, H ′ is of the form
B′0 ∪ B′1 where, for b = 0, 1, B′b = B(z′b, r

′
b) and neither B′0 ⊆ B′1 nor B′1 ⊆ B′0. As in

the analysis of Case 1, it follows that (x0, x1) represents the diameter of H ′. It follows that
x0 is the north pole of one of the balls in H ′ and x1 is the south pole of the other ball in
H ′. After renumbering (if necessary), we may assume that x0 is the north pole of B′0 and
x1 is the south pole of B′1. The chosen location of x2 makes sure that x2 /∈ B′1 because,
otherwise, the diameter of B′1 would exceed the diameter of B1 (in which case H would be
preferred over H ′). It follows that x2 ∈ B′0. The chosen location of x3 similarly implies
that x3 /∈ B′0. It follows that x3 ∈ B′1. Recall that x1 is the south pole of B1 and also of
B′1. Point x3 (located at the surface of B1) can belong to B′1 only if r′1 ≥ r1. On the other
hand r′1 ≤ r1 because, otherwise, H would be preferred over H ′. We may conclude that
B′1 = B1. A similar argument (exploiting that x0 is the north pole of B0 and also of B′0 and
that x2 ∈ B′0) shows that B′0 = B0. Thus, as claimed, {x1, x2, x3, x4} is a positive teaching
set for H w.r.t. (BALLSd

2,≺).

This case analysis concludes the proof of Theorem 20.

Let BALLSd
k[transl] be the sub-class of BALLSd

k consisting of concepts for which all balls in the
defining union must have the same radius. BALLSd

=k[transl] is defined analogously.

Corollary 21 PBTD+(BALLSd
2[transl]) = PBTD+(BALLSd

=2[transl]) = 3.
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Figure 4: Positive teaching sets for the union of two (not necessarily distinct) balls in the PBT
model.

Proof The lower bound is immediate from Corollary 16. For the upper bound, we may proceed as
in the proof of Theorem 20 but the point x2 occurring in the analysis of Case 2 becomes superfluous
when we know that r0 = r1 and r′0 = r′1.

Appendix E. Teaching Unions of Two Cubes

Recall from Corollary 18 that PBTD(CUBESd
k[disj]) is bounded from below by 2k and from above

by 3k. We will now demonstrate that 4 positive examples suffice for teaching any union of two
(potentially overlapping) cubes:

Theorem 22 For all d ≥ 2:

PBTD(CUBESd
2) = PBTD+(CUBESd

2) = PBTD(CUBESd
=2) = PBTD+(CUBESd

=2) = 4 .

Proof PBTD(CUBESd
=2) ≥ 4 is an immediate consequence of Corollary 18. It remains to show

that PBTD+(CUBESd
2) ≤ 4. For this purpose, choose points to be labeled “1” in a teaching set for

a concept C as follows. Here, a concept consisting of a single cube is considered the union of two
copies of the same cube. (i) If both cubes are non-degenerate, select two (d− 1)-dimensional faces
in C that are parallel and as far apart as possible2; from each pick two diagonally opposite corner
points. See Figure 5(a) for illustration. (ii) If both cubes in C are degenerate (i.e., singletons),
choose the set of points in C as positive examples. (iii) If exactly one of the two cubes in C is
degenerate, choose its single point as the first positive example, and pick two more positive examples
as two diagonally opposite corner points of a (d− 1)-dimensional face of the non-degenerate cube;
this face is to be chosen so that it is as far away as possible from the degenerate cube. The following
hierarchical preference relation is chosen.

2. which implies that these faces are not taken from the same cube unless C consists of one cube only
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a) b)

Figure 5: Positive teaching sets for the union of two axis-aligned cubes with arbitrary area and for
two axis-aligned cubes with the same area in the PBT model.

Rule 1: With highest priority, prefer concepts whose largest cube is as small as possible.

Rule 2: With second highest priority, prefer concepts whose smallest cube is as small as possible.

Rule 3: With least priority, prefer concepts in which the center points of the two participating cubes
are as close to one another as possible.

The first two rules obviously settle the case when the target concept C consists of only one or two
points. If C consists of two non-degenerate cubes, Rules 1 and 2 will ensure that the four points are
matched up in two pairs correctly, and that each pair will form a diagonal of a face of one cube (note
that both cubes must be axis-aligned). Due to Rule 3, the position of each cube relative to the al-
ready discovered face is chosen correctly. If exactly one of the two cubes is degenerate, again Rules
1 and 2, together with the constraint that both cubes are axis-aligned, will assign the positive exam-
ples correctly to the two cubes, and Rule 3 will determine the position of the non-degenerate cube.

Similar to the case of teaching unions of balls all of which have the same (unknown) volume,
requiring all cubes in the union to have the same (unknown) volume makes teaching easier.

Theorem 23 For all d ≥ 2:

PBTD(CUBESd
2[transl]) = PBTD+(CUBESd

2[transl])

= PBTD(CUBESd
=2[transl]) = PBTD+(CUBESd

=2[transl]) = 3 .

Proof First, we show PBTD(CUBESd
2[transl]) ≤ 3. This upper bound is obtained via the same

teaching strategy as described in the proof of Theorem 22; here one of the four points labeled “1”
can be omitted, as the size of the second cube is determined by the size of the first cube in the union.
The cube represented by only one positive example will be positioned by the learner in a way that
the given positive example is a corner of the cube that is as far away as possible from the center of
the first cube. See Figure 5(b) for illustration.

Second, we prove PBTD(CUBESd
=2[transl]) ≥ 3. To this end, we once again deploy the lower

bound in Equation (4), i.e., we claim that there is a finite subclass L of CUBESd
=2[transl] whose
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Figure 6: A finite subclass of CUBESd
=2[transl] whose TDmin is at least 3: To form a concept

consisting of exactly two equal-sized cubes, the first cube in the union is chosen from one
of the ten cubes depicted to the left of the dashed line; the second cube is then chosen
from the right-hand side of the dashed line, as one of two (one of eight) options if the first
cube has side length 2 (side length 1, respectively).

TDmin is at least 3, which will complete the proof. Let C1, C2, C3, C4 be mutually disjoint “big”
cubes of side length 2 each of which decomposes into 2d “small” cubes of side length 1. See Fi-
gure 6 for an illustration in two dimensions. We say that C1 and C2 (resp. C3 and C4) and all
the corresponding subcubes belong to the first (resp. to the second) group of cubes. Thus there are
two big and 2 · 2d small cubes in each of the two groups. The concepts in the constructed finite
subclass L of CUBESd

=2[transl] are built by choosing one cube from the first group and another one
of the same size from the second group. It is now easy to see that none of the concepts in L can be
uniquely specified by a teaching set of size 2. Hence TDmin(L) ≥ 3, which completes the proof.

As for the class BOXESd
2, we have some preliminary results but, as we think that they can be

improved further, we do not include them here.
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